• Title/Summary/Keyword: RC model

Search Result 1,262, Processing Time 0.026 seconds

Arch Action in Simply Supported RC Beams Applied by Distributed Loads (분포하중을 받는 단순지지된 RC보에서의 아치효과)

  • Lee, Seong-Cheol;Park, Byung-Sun;Cho, Jae-Yeol;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.181-184
    • /
    • 2008
  • In the case of RC beams simply supported, there is arch action that the length of internal lever arm varies through span. Recently the shear analysis model which considers this arch action has been developed, but this analysis model is only applicable to RC beams subjected to concentrated load. In this study, therefore, the fundamental relationship between internal lever arm length and applied moment is developed with considering general load such as uniformly distributed load. The shear compatibility condition is also derived, which is also applicable to RC beams subjected to uniformly distributed load. From the analysis results of RC beams, the variation of shear strains through span could be expected by the proposed analysis model. The magnitude of shear strains expected from analysis is so relatively small that the effect of shear force due to arch action should be considered on analysis.

  • PDF

Flexural strengthening of RC one way solid slab with Strain Hardening Cementitious Composites (SHCC)

  • Basha, Ali;Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.511-527
    • /
    • 2020
  • The main aim of the current research is to investigate the flexural behavior of the reinforced concrete (RC) slabs strengthened with strain hardening cementitious composites (SHCC) experimentally and numerically. Seven RC slabs were prepared and tested under four-points loading test. One un-strengthened slab considered as control specimen while six RC slabs were strengthened with reinforced SHCC layers. The SHCC layers had different reinforcement ratios and different thicknesses. The results showed that the proposed strengthening techniques significantly increased the ultimate failure load and the ductility index up to 25% and 22%, respectively, compared to the control RC slab. Moreover, a three dimensional (3D) finite element model was proposed to analyze the strengthened RC slabs. It was found that the results of the proposed numerical model well agreed with the experimental responses. The validated numerical model used to study many parameters of the SHCC layer such as the reinforcement ratios and the different thicknesses. In addition, steel connectors were suggested to adjoin the concrete/SHCC interface to enhance the flexural performance of the strengthened RC slabs. It was noticed that using the SHCC layer with thickness over 40 mm changed the failure mode from the concrete cover separation to the SHCC layer debonding. Also, the steel connectors prevented the debonding failure pattern and enhanced both the ultimate failure load and the ductility index. Furthermore, a theoretical equation was proposed to predict the ultimate load of the tested RC slabs. The theoretical and experimental ultimate loads are seen to be in fairly good agreement.

Uniaxial Compression Behavior of RC Columns Confined by Carbon Fiber Sheet Wraps (탄소섬유쉬트로 구속된 RC 기둥의 일축압축 거동)

  • Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.207-216
    • /
    • 2005
  • External confinement by CFS (Carbon Fiber Sheet) is a very effective retrofit method for the reinforced concrete columns subject to either static or seismic loads. For the reliable and cost-effective design of CFS, an accurate stress-strain model is required for CFS-confined concrete. In this paper, uniaxial compression test on short RC column with square section was performed. To evaluate the effect of confinement on the stress-strain relationship of CFS-confined concrete, CFS area ratio and tie area ratio are considered. Based on the experimental results, a stress-strain model is proposed for concrete confined by CFS wraps. In the development of the model, the method to compute the actual hoop strains in CFS jackets at the rupture was examined and resolved. Overall, the results of the model agree well with test data.

Proposals of Indeterminate Strut-Tie Model and Load Distribution Ratio for Design of RC Corbels (철근콘크리트 코벨의 설계를 위한 부정정 스트럿-타이 모델 및 하중분배율의 제안)

  • Chae, Hyun-Soo;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.197-200
    • /
    • 2008
  • The RC corbels with the ratio of shear span-to-effective depth less than 1 are commonly used to transfer loads from beams to columns. The ultimate strengths and structural behaviors of RC corbels are controlled by the shear span-to-effective depth ratio, strength of concrete, shape and quantity of the reinforcement, and geometry of corbels. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behaviors is presented for the design of RC corbels. In addition, a load distribution ratio, defined as a magnitude of load transferred by a horizontal truss mechanism, is proposed to help structural designers perform the design of RC corbels by using the strut-tie model approaches of current design codes. The ultimate strengths of 30 RC corbels tested to failure are evaluated by using the ACI 318-05's strut-tie model code for the validity check of the proposed indeterminate strut-tie model and load distribution ratio.

  • PDF

Analysis of Reinforced Concrete Columns under Cyclic Loads Using a 2-Dimensional Lattice Model (2차원 래티스 모델에 의한 반복 하중을 받는 철근콘크리트 기둥의 해석)

  • Kwon, Min-Ho;Ha, Gee-Joo;Park, Tae-Gyu;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.103-111
    • /
    • 2010
  • An efficient design concept for earthquake loads, which is called performance based design, has been standard design in USA, Europe and Japan since those countries experienced severe earthquake damage at end of 90's. For general design, struttie model well predicts the strength of the disturbed region, however, it does not provide ductility information at the failure. Therefore, simple tools which are able to predict both the strength and the ductility of RC structures are in demand. 2D lattice model is introduced in this study as an analysis tool for the RC structures subject to earthquake. Experimental correlation studies indicate the 2D lattice model quite well predict the strength as well as the ductility of RC structures.

Finite Element Analysis for Evaluating the Performance of RC Beams Strengthened with SFRP Coating (분사식 섬유보강 코팅으로 보강된 RC보의 성능평가를 위한 유한요소해석 연구)

  • Ha, Sung-Kug;Yang, Bum-Joo;Lee, Haeng-Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.579-585
    • /
    • 2009
  • In this paper, a series of finite element analyzes were carried out to evaluate the performance of the RC beams strengthened with sprayed fiber reinforced polymer(SFRP) coating. A damage constitutive model based on the micromechanical constitutive model(Lee, 2001) in conjunction with the damage models(Lee 등, 2000) for SFRP coating was implemented into the finite element code ABAQUS. The present prediction results were compared with experimental data(Ha, 2007; Ha 등, 2009) to assess the accuracy of the damage constitutive model. It was concluded from the comparative study that the computational model developed by implementing the damage constitutive model into ABAQUS is suitable for the prediction of the performance of RC beams strengthened with SFRP coating.

Kernel-Trick Regression and Classification

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.201-207
    • /
    • 2015
  • Support vector machine (SVM) is a well known kernel-trick supervised learning tool. This study proposes a working scheme for kernel-trick regression and classification (KtRC) as a SVM alternative. KtRC fits the model on a number of random subsamples and selects the best model. Empirical examples and a simulation study indicate that KtRC's performance is comparable to SVM.

Evaluation of Radioactive Source Terms in the System-Integrated Modular Advanced Reactor

  • Kim, Seong-Uck;Kang, Chang-Sun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 1999
  • A 330 MWt-sized multi-purpose integral-type reactor, SMART is under development in Korea for the use of nuclear energy other than electricity generation. In this study, various radioactive source terms are estimated for SMART. SMART is different from conventional reactor concepts in operation and design. Therefore Specific Calculation method namely recurrence model is used. This model is based on the change rate in the RC radioactivity materials and operational characteristics of SMART Calculation results show tremendously increase of the levels of RC activity because no cleanup of RC and long term operation.

  • PDF

Shear Response Prediction of the Reinforced Concrete Beams using Truss Models for Membrane Element Analysis (막요소 해석에 사용된 트러스 모델을 이용한 철근콘크리트 보의 전단거동 예측)

  • Kim, Sang-Woo;Lee, Jung-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.77-85
    • /
    • 2003
  • This paper presents a truss model that can predict the shear behavior of reinforced concrete (RC) beams subjected to the combined actions of shear and flexure. Unlike other truss models, the proposed truss model, TATM, takes into account the effect of the flexural moment on the shear strength of RC beams with different shear span-to-depth ratios. To check the successfulness of the proposed model experimentally obtained stress shear strain curves were compared to the predicted ones using the proposed truss model. Furthermore, the shear strengths of 170 RC test beams with variable shear span-to-depth ratios were compared to the shear strengths as given by the truss model reported in this paper.

  • PDF

Development of a displacement-based design approach for modern mixed RC-URM wall structures

  • Paparoa, Alessandro;Beyer, Katrin
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.789-830
    • /
    • 2015
  • The recent re-assessment of the seismic hazard in Europe led for many regions of low to moderate seismicity to an increase in the seismic demand. As a consequence, several modern unreinforced masonry (URM) buildings, constructed with reinforced concrete (RC) slabs that provide an efficient rigid diaphragm action, no longer satisfy the seismic design check and have been retrofitted by adding or replacing URM walls with RC walls. Of late, also several new construction projects have been conceived directly as buildings with both RC and URM walls. Despite the widespread use of such construction technique, very little is known about the seismic behaviour of mixed RC-URM wall structures and codes do not provide adequate support to designers. The aim of the paper is therefore to propose a displacement-based design methodology for the design of mixed RC-URM edifices and the retrofit of URM buildings by replacing or adding selected URM walls with RC ones. The article describes also two tools developed for estimating important quantities relevant for the displacement-based design of structures with both RC and URM walls. The tools are (i) a mechanical model based on the shear-flexure interaction between URM and RC walls and (ii) an elastic model for estimating the contribution of the RC slabs to the overturning moment capacity of the system. In the last part of the article the proposed design method is verified through nonlinear dynamic analyses of several case studies. These results show that the proposed design approach has the ability of controlling the displacement profile of the designed structures, avoiding concentration of deformations in one single storey, a typical feature of URM wall structures.