• Title/Summary/Keyword: RC member

Search Result 281, Processing Time 0.024 seconds

Experimental and Analytical Evaluation of the Seismic performance of a Concrete Box Structure Strengthened with Pre-flexed Members (프리플렉스 부재를 이용한 콘크리트 박스 구조물 내진보강에 관한 실험 및 해석적 평가)

  • Ann, Ho-June;Song, Sang-Geun;Min, Dae-Hong;An, Sang-Mi;Kong, Jung-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.397-403
    • /
    • 2016
  • During the rapid economic growth in Korea since the 1970s, many underground facilities were constructed such as under passes and railways. Seismic design has been mandated in 1988, but the structures built before 1988 were not reflected on the seismic design. Accordingly, these underground structures require effective seismic reinforcing methods to ensure safety when the earthquake happens. By these reasons, in this study, using the proposed pre-flexed members, RC box structure was analyzed for seismic reinforcement of the corner. This method is based on a principle that enlarging the resistance against the external force by installing the pre-flexed member to the box structure corner. To evaluate validity, a newly developed member with CornerSafe was compared with traditional type reinforcement using experiments and finite element analysis. In finite element mode, nonlinearity of steel was modeled based on J2 plasticity model and concrete was based on CEB FIP MODEL CODE 1990. Also, composite ratios of box and pre-flexed member were computed for design application. The reinforcement and box structure were analyzed under the bond condition completely attached by the tie, and the results of experiment and finite element analysis were same in the force-displacement curve.

Residual Shear Strength Evaluation for RC Beam Member (RC 보 부재의 잔존 전단강도 평가)

  • Myung, Gun-Hak;Rhee, Chang-Shin;Kim, Dae-Joong;Mo, Gui-Suk;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.283-286
    • /
    • 2005
  • Recently, the deterioration of concrete structures have been increased by the damage from salt, carbonization, freezing & thawing and the others. Reinforcement corrosion is the principal cause of deterioration of reinforced concrete. Unfortunately, full bond is assumed in all existing shear models, a condition which is often not fulfilled when assessing damaged structures. It is therefore very important to increase the understanding of how reduced bond influences the load carying capacity particularly for shear. Therefore in this study an equation is proposed to evaluate the residual shear strength considered deterioration.

  • PDF

Flexural Capacity Evaluation of RC Member Retrofitted by CFS and with Various Damage Level (탄소섬유로 휨보강된 RC 부재의 손상정도에 따른 보유내력평가)

  • Seo, Soo-Yeon;Kim, Kyong-Tae;Yoon, Seung-Joe;Yun, Hyun-Do;Choi, Chang-Sik;Choi, Gi-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.326-329
    • /
    • 2006
  • Strengthening method using CFS have been developed for the rehabilitation of structures. However, it is very difficult to estimate their resistance capacity after retrofit. Therefore, damage information for strengthened structure with CFS investigated and the estimation method structural capacity by using the damage information is developed. The final objective of this research work is to propose the guideline and method for resistance capacity estimate of structure. In this paper, experimental study result with test parameters of number of carbon fiber sheets and bonding ratio is introduced.

  • PDF

A Basic Study on an Application of the Modified Epoxy Mortar for Seismic Reinforcement (내진보강을 위한 변성에폭시 모르터 활용방안 기초연구)

  • Kim, Boo-Young;Yang, Seongpil;Kim, Sangho;Son, Kiyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.176-177
    • /
    • 2014
  • Although the modified epoxy mortar can be applied to the reinforcement for RC member, the mortar has been little used in construction site. In addition, there is a few studies regarding the experiment as the material improving the seismic performance. Therefore, this study is to propose an effective reinforcement alternative for RC Ordinary Moment Resisting Frame (OMRF) through evaluation of seismic performance and economic analysis. The findings of this study can be utilized as the basic data in construction sites when the modified epoxy mortar is applied for seismic performance reinforcement.

  • PDF

Deflection Estimation of Reinforced Concrete Beams Derived from Crack Widths (균열폭을 통한 철근콘크리트 보의 처짐 추정)

  • Kang, Ju-Oh;Kim, Kang-Su;Lee, Deuck-Hang;Hwang, Jin-Ha;Im, Ju-Hyeuk;Lee, Jung-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.157-158
    • /
    • 2010
  • Based on the relation between cracks and deflection in a RC beam, this study proposed a method to estimate the deflection of RC beams directly from the condition of cracks not using the actual loads acting on the member. The deflections of members were successfully estimated by the proposed method, which was also easy to apply compared to the existing methods.

  • PDF

Application of the Direct Displacement Based Design Methodology for Different Types of RC Structural Systems

  • Malekpour, Saleh;Dashti, Farhad
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.135-153
    • /
    • 2013
  • This study investigates the direct displacement based design (DDBD) approach for different types of reinforced concrete structural systems including single moment-resisting, dual wall-frame and dual steel-braced systems. In this methodology, the displacement profile is calculated and the equivalent single degree of freedom system is then modeled considering the damping characteristics of each member. Having calculated the effective period and secant stiffness of the structure, the base shear is obtained, based on which the design process can be carried out. For each system three frames are designed using DDBD approach. The frames are then analyzed using nonlinear time-history analysis with 7 earthquake accelerograms and the damage index is investigated through lateral drift profile of the models. Results of the analyses and comparison of the nonlinear time-history analysis results indicate efficiency of the DDBD approach for different reinforced concrete structural systems.

Problems in Seismic Design of High-Rise RC Building Frame Systems (초고층 건물골조 시스템의 내진설계상 문제점)

  • Lee, Han-Seon;Jung, Sung-Wook;Ko, Dong-Woo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.195-202
    • /
    • 2005
  • High-rise residential buildings in these days tend to adopt a building frame system as primary earthquake resisting structural system for some architectural reasons. But there exist several ambiguities in designing such building frame systems according to current codes, with regards to : the effective stiffness property of RC cracked section in static and dynamic analyses, analytical model to evaluate story drift ratio and, deformation compatibility requirements of frames. The comparative study for these issues by appling IBC 2000 and KBC 2005 to a typical building frame system shows that demands of member strength and story drift ratio can be different significantly depending on designer's interpretation and application of code requirements.

  • PDF

Structural Performance of Reinforcement corrosion RC Beams Strengthened with Epoxy Mortar System (에폭시모르타르로 보강된 부식철근 RC보의 구조적 성능)

  • Han, Bok-Kyu;Hong, Geon-Ho;Shin, Yeong-Soo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.769-774
    • /
    • 2000
  • The purpose of this study was to investigate the structural performance of reinforcement corrosion reinforced concrete beams strengthened with epoxy mortar system. Main test parameters are existence and the magnitude of the reinforcement corrosion and the reinforcing bar and the tensile reinforcement ratio of the specimens. eight beam specimens were tested to investigate the effectiveness of each test variables on maximum load capacity and failure mode. Test results showed that the ultimate moment of th specimens were higher tan the nominal moment and the flexural stiffness was increased about 2.5 times and the cracking moments occurred over 60% of the failure moment in comparison with same sized control beam. However, note that epoxy mortar may conduct member into brittle failure mode.

  • PDF

Fatigue Behavior of Tensile RC Members Jointed by the Mechanical Coupler (상온스웨이징 나사 철근 이음한 철근콘크리트 인장부재의 피로거동)

  • Jung, Yeong-Hwa;Park, Yong-Suk
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.127-134
    • /
    • 2006
  • As material needs have been increasing with recent economic growth, it is a current tendency that the magnitude of load applied to structure has been rising. With improved technique of product materials, steel and concrete have been stranger than ever so the danger of fatigue damage increases as permanent action of repeated loads. In case of deformed steel bars widely used in reinforced concrete structure, when they are product in factory, there will exist same parts connecting the steels. Such connections are easy to be weakened by permanent action of repeated loads. It is a real condition in Korea that there is lack of research of it. As a result of estimating fatigue characteristic of Pressure Welded joints with the steels that are oftenly used and producted in domestic it is showed that there are no remarkable difference in fatigue strength. Because there is no detail which is refered in Civil Specification, this paper will be the basic data being added in later Specification.

  • PDF

Anti-seismic Capacity Improvement of Underground Box Structures Strengthened with Pressure Bracing (가압식 브레이싱 보강에 의한 지중박스구조물의 내진성능향상 방법)

  • Chung, Jee-Seung;Moon, In-Gi;Min, Dae-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.97-102
    • /
    • 2013
  • This paper presents a new strengthening method of underground box structures against seismic loads for anti-seismic capacity improvement. A threaded steel member with pressure devices(so called 'I-bracing pressure system') is used to improve seismic capacity of the RC box structure. The I-bracing pressure system is fixed the corner of opening after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. Two bracing types of strengthening methods were used; conventional bracing method and improved I-bracing pressure system. For the performance evaluation, seismic analyses were performed on moment and shear resisting structures with and without I-bracing pressure system. Numerical results confirmed that the proposed I-bracing pressure system can enhance the seismic capacity of the underground RC box structures.