• 제목/요약/키워드: RC buildings

Search Result 523, Processing Time 0.026 seconds

Fundamental period of infilled RC frame structures with vertical irregularity

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Foskolos, Filippos;Fotos, Alkis;Tsaris, Athanasios K.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.663-674
    • /
    • 2017
  • The determination of the fundamental period of vibration of a structure is essential to earthquake design. Current codes provide formulas for the approximate estimation of the fundamental period of earthquake-resistant building systems. These formulas are dependent only on the height of the structure or number of storeys without taking into account the presence of infill walls into the structure, despite the fact that infill walls increase the stiffness and mass of the structure leading to significant changes in the fundamental period. Furthermore, such a formulation is overly conservative and unable to account for structures with geometric irregularities. In this study, which comprises the companion paper of previous published research by the authors, the effect of the vertical geometric irregularities on the fundamental periods of masonry infilled structures has been investigated, through a large set of infilled frame structure cases. Based on these results, an attempt to quantify the reduction of the fundamental period due to the vertical geometric irregularities has been made through a proposal of properly reduction factor.

Shear behavior of RC interior joints with beams of different depths under cyclic loading

  • Xi, Kailin;Xing, Guohua;Wu, Tao;Liu, Boquan
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.145-153
    • /
    • 2018
  • Extensive reinforced concrete interior beam-column joints with beams of different depths have been used in large industrial buildings and tall building structures under the demand of craft or function. The seismic behavior of the joint, particularly the relationship between deformation and strength in the core region of these eccentric reinforced concrete beam-column joints, has rarely been investigated. This paper performed a theoretical study on the effects of geometric features on the shear strength of the reinforced concrete interior beam-column joints with beams of different depths, which was critical factor in seismic behavior. A new model was developed to analyze the relationship between the shear strength and deformation based on the Equivalent Strut Mechanism (ESM), which combined the truss model and the diagonal strut model. Additionally, this paper developed a simplified calculation method to estimate the shear strength of these type eccentric joints. The accuracy of the model was verified as the modifying analysis data fitted to the test results, which was a loading test of 6 eccentric joints conducted previously.

Correlation of Experimental and Analytical Inelastic Responses of A 1:12 Scale 10-Story Reinforced Concrete Frame-Wall Structure (1:12축소 10층 철근콘크리트 골조-벽식 구조의 비선형 거동에 대한 실험과 해석의 상관성)

  • 이한선;김상호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.119-126
    • /
    • 2000
  • Reinforced concrete structural walls are widely known to provide an efficient lateral load resistance and drift control. However, many reported researches on them are mostly limited to the RC structural walls reinforced according to seismic details. When the pushover analysis technique is used for the prediction of inelastic behavior of frame-wall structures for the seismic evaluation of existing buildings having non-seismic details, the reliability of this analysis method should be checked by the test results. The objective of this study is to verify the correlation between the experimental and analytical responses of a high-rise reinforced concrete frame-wall structure having non-seismic details by using DRAIN-2DX program[11] and the test results performed previously[1]. It is concluded that the behavior of the frame-wall model is mainly affected by the fixed-end rotation(uplift at base) and bending deformation of the wall and that the analysis with the LINKS model[10] in DRAIN-2DX describes them with good reliability.

Structural analysis of high-rise reinforced concrete building structures during construction

  • Song, Xiaobin;Gu, Xianglin;Zhang, Weiping;Zhao, Tingshen;Jin, Xianyu
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.513-527
    • /
    • 2010
  • This paper presents a three-dimensional finite element method based structural analysis model for structural analysis of reinforced concrete high-rise buildings during construction. The model considered the time-dependency of the structural configuration and material properties as well as the effect of the construction rate and shoring stiffness. Uniaxial compression tests of young concrete within 28 days of age were conducted to establish the time-dependent compressive stress-strain relationship of concrete, which was then used as input parameters to the structural analysis model. In-situ tests of a RC high-rise building were conducted, the results of which were used for model verification. Good agreement between the test results and model predictions was achieved. At the end, a parametric study was conducted using the verified model. The results indicated that the floor position and construction rate had significant effect on the shore load, whereas the influence of the shore removal timing and shore stiffness have much smaller. It was also found that the floors are more prone to cracking during construction than is ultimate bending failure.

Estimating floor spectra in multiple degree of freedom systems

  • Calvi, Paolo M.;Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.17-38
    • /
    • 2014
  • As the desire for high performance buildings increases, it is increasingly evident that engineers require reliable methods for the estimation of seismic demands on both structural and non-structural components. To this extent, improved tools for the prediction of floor spectra would assist in the assessment of acceleration sensitive non-structural and secondary components. Recently, a new procedure was successfully developed and tested for the simplified construction of floor spectra, at various levels of elastic damping, atop single-degree-of-freedom structures. This paper extends the methodology to multi-degree-of-freedom (MDOF) supporting systems responding in the elastic range, proposing a simplified modal combination approach for floor spectra over upper storeys and accounting for the limited filtering of the ground motion input that occurs over lower storeys. The procedure is tested numerically by comparing predictions with floor spectra obtained from time-history analyses of RC wall structures of 2- to 20-storeys in height. Results demonstrate that the method performs well for MDOF systems responding in the elastic range. Future research should further develop the approach to permit the prediction of floor spectra in MDOF systems that respond in the inelastic range.

Damping Ratio Evaluation Using Long-Term Ambient Vibration (장기간 상시계측을 통한 감쇠율 평가)

  • Kim, Yong Chul;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • The identification of damping ratios in buildings is a well-known problem and appears to be of important and crucial interest in the safety and serviceability design. When compared to an estimation of the stiffness, i.e. natural frequency, and mass, the damping ratio is the most difficult quantity to determine. Many previous studies have examined the characteristics of damping ratios from ambient vibration, but the measurement time is roughly within 2 hours. In this paper, characteristics of damping ratios and natural frequencies of 4 story RC building were investigated using long-term ambient vibration. Free vibrations were obtained using random decrement technique, and damping ratios were evaluated by the envelop function, continuous wavelet transform, and logarithmic decrement. It was found that although the natural frequencies show little variations with time, the damping ratios show some variations with time and the largest variations found in the damping ratios obtained from the continuous wavelet transform. The damping ratios from the envelop function showed the smallest mean and standard deviation. And the probability distribution of damping ratios seems to follow the logarithmic normal distribution.

Optimum tuned mass damper design for preventing brittle fracture of RC buildings

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.137-155
    • /
    • 2013
  • Brittle fracture of structures excited by earthquakes can be prevented by adding a tuned mass damper (TMD). This TMD must be optimum and suitable to the physical conditions of the structure. Compressive strength of concrete is an important factor for brittle fracture. The application of a TMD to structures with low compressive strength of concrete may not be possible if the weight of the TMD is too much. A heavy TMD is dangerous for these structures because of insufficient axial force capacity of structure. For the preventing brittle fracture, the damping ratio of the TMD must be sufficient to reduce maximum shear forces below the values proposed in design regulations. Using the formulas for frequency and damping ratio related to a preselected mass, this objective can be only achieved by increasing the mass of the TMD. By using a metaheuristic method, the optimum parameters can be searched in a specific limit. In this study, Harmony Search (HS) is employed to find optimum TMD parameters for preventing brittle fracture by reducing shear force in additional to other time and frequency responses. The proposed method is feasible for the retrofit of weak structures with insufficient compressive strength of concrete.

Shear Strength and Seismic Behavior of the Composite Shear Wall with the Steel Plate Embedded in the RC Wall (철판삽입 합성전단벽의 전단강도와 내진거동)

  • Chun, Young-Soo;Park, Ji-Young;Lee, Jong-Yoon
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • This study proposed hybrid coupled shear wall in the steel plate insertion method, which is capable of reinforcing the shear strength of the entire wall without increasing wall thickness in the wall-slab apartment buildings. The proposed hybrid coupled shear wall was tested for its effectiveness, shear strength and seismic behavior in experiment. As a test result, the shear strength improvement by the proposed hybrid coupled shear was found effective. Integral-type of steel plate insertion was found more effective than separate-type steel plate insertion. In this case, if the stud enforcement method proposed in this study was used, the shear strength of hybrid coupled shear wall was recommended to calculate using the KBC2016 0709.4.1(3) method. The steel plate inserted in the proposed method was found to have no significant impact on the final fracture behavior and bending strength of hybrid coupled shear wall. The shear strength at the final destruction of the wall was merely about 1/50 of the entire design shear strength. Thus, it is deemed that the wall was over excessively designed regarding the shear force in the existing design method. This finding indicates further study on wall designing to ensure effective and economic designing based on appropriate strength estimation under the destruction mechanism.

Case study on seismic retrofit and cost assessment for a school building

  • Miano, Andrea;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • In different high seismic regions around the world, many non-ductile existing reinforced concrete frame buildings, built without adequate seismic detailing requirements, have been damaged or collapsed after past earthquakes. The assessment and the retrofit of these non-ductile concrete structures is crucial theme of research for all the scientific community of engineers. In particular, a careful assessment of the existing building is fundamental for understanding the failure mechanisms that govern the collapse of the structure or the achievement of the recommended limit states. Based on the seismic assessment, the best retrofit strategy can be designed and applied to the structure. A school building located in Avellino province (Italy) is the case study. The analysis of seismic vulnerability carried out on the mentioned building has highlighted deficiencies in both static and seismic load conditions. The retrofit of the building has been designed based on different retrofit options in order to show the real retrofit design developed from the engineers to achieve the seismic safety of the building. The retrofit costs associated to structural operations are calculated for each case and have been summed up to the costs of the in situ tests. The paper shows a real retrofit design case study in which the best solution is chosen based on the results in terms of structural performance and cost among the different retrofit options.

A displacement-based seismic design method with damage control for RC buildings

  • Ayala, A. Gustavo;Castellanos, Hugo;Lopez, Saul
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.413-434
    • /
    • 2012
  • This paper presents a displacement-based seismic design method with damage control, in which the targets for the considered performance level are set as displacements and a damage distribution is proposed by the designer. The method is based on concepts of basic structural dynamics and of a reference single degree of freedom system associated to the fundamental mode with a bilinear behaviour. Based on the characteristics of this behaviour curve and on the requirements of modal spectral analysis, the stiffness and strength of the structural elements of the structure satisfying the target design displacement are calculated. The formulation of this method is presented together with the formulations of two other existing methods currently considered of practical interest. To illustrate the application of the proposed method, 5 reinforced concrete plane frames: 8, 17 and 25 storey regular, and 8 and 12 storey irregular in elevation. All frames are designed for a seismic demand defined by single earthquake record in order to compare the performances and damage distributions used as design targets with the corresponding results of the nonlinear step by step analyses of the designed structures subjected to the same seismic demand. The performances and damage distributions calculated with these analyses show a good agreement with those postulated as targets.