• 제목/요약/키워드: RC buildings

검색결과 514건 처리시간 0.023초

연속지진에 대한 지진 취약 철근콘크리트 건축물의 FRP 재킷 보수 전략 연구 (Repair Scheme of FRP Column Jacketing System for Seismically-vulnerable RC Buildings under Successive Earthquakes)

  • 김수빈;김혜원;박재은;신지욱
    • 한국공간구조학회논문집
    • /
    • 제23권2호
    • /
    • pp.79-90
    • /
    • 2023
  • Existing reinforced concrete (RC) frame buildings have seismic vulnerabilities because of seismically deficient details. In particular, since cumulative damage caused by successive earthquakes causes serious damage, repair/retrofit rehabilitation studies for successive earthquakes are needed. This study investigates the repair effect of fiber-reinforced polymer jacketing system for the seismically-vulnerable building structures under successive earthquakes. The repair modeling method developed and validated from the previous study was implemented to the building models. Additionally, the main parameters of the FRP jacketing system were selected as the number of FRP layers associated with the confinement effects and the installation location. To define the repair effects of the FRP jacketing system with the main parameters, this study conducted nonlinear time-history analyses for the building structural models with the various repairing scenarios. Based on this investigation, the repair effects of the damaged building structures were significantly affected by the damage levels induced from the mainshocks regardless of the retrofit scenarios.

Estimation of fundamental period of reinforced concrete shear wall buildings using self organization feature map

  • Nikoo, Mehdi;Hadzima-Nyarko, Marijana;Khademi, Faezehossadat;Mohasseb, Sassan
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.237-249
    • /
    • 2017
  • The Self-Organization Feature Map as an unsupervised network is very widely used these days in engineering science. The applied network in this paper is the Self Organization Feature Map with constant weights which includes Kohonen Network. In this research, Reinforced Concrete Shear Wall buildings with different stories and heights are analyzed and a database consisting of measured fundamental periods and characteristics of 78 RC SW buildings is created. The input parameters of these buildings include number of stories, height, length, width, whereas the output parameter is the fundamental period. In addition, using Genetic Algorithm, the structure of the Self-Organization Feature Map algorithm is optimized with respect to the numbers of layers, numbers of nodes in hidden layers, type of transfer function and learning. Evaluation of the SOFM model was performed by comparing the obtained values to the measured values and values calculated by expressions given in building codes. Results show that the Self-Organization Feature Map, which is optimized by using Genetic Algorithm, has a higher capacity, flexibility and accuracy in predicting the fundamental period.

Influence of ductility classes on seismic response of reinforced concrete structures

  • Nikolic, Zeljana;Zivaljica, Nikolina;Smoljanovic, Hrvoje
    • Coupled systems mechanics
    • /
    • 제7권2호
    • /
    • pp.177-195
    • /
    • 2018
  • Reinforced concrete buildings in a seismically active area can be designed as DCM (medium ductility) or DCH (high ductility) class according to the regulations of Eurocode 8. In this paper, two RC buildings, one with a wall structural system and the other with a frame system, previously designed for DCM and DCH ductility, were analysed by using incremental dynamic analysis in order to study differences in the behaviour of structures between these ductility classes, especially the failure mechanism and ultimate collapse acceleration. Despite the fact that a higher behaviour factor of DCH structures influences lower seismic resistance, in comparison to DCM structures, a strict application of the design and detailing rules of Eurocode 8 in analysed examples caused that the seismic resistance of both frames does not significantly differ. The conclusions were derived for two buildings and do not necessarily apply to other RC structures. Further analysis could make a valuable contribution to the analysis of the behaviour of such buildings and decide between two ductility classes in everyday building design.

Comparison between the Egyptian and international codes based on seismic response of mid- to high-rise moment resisting framed buildings

  • Ahmed Ibrahim;Ibrahim El-Araby;Ahmed I. Saleh;Mohammed Shaaban
    • Structural Engineering and Mechanics
    • /
    • 제87권4호
    • /
    • pp.347-361
    • /
    • 2023
  • This research aims to assess the behavior of reinforced concrete (RC) residential buildings when moment-resisting frames (MRFs) are used as the lateral resisting system. This investigation was conducted using MIDAS Gen v.19.0. Buildings with various plan footprints (Square, Rectangular, Circular, Triangular, and Plus-Shaped), and different heights (15 m, 30 m, 45 m, and 60 m) are investigated. The defined load cases, the equivalent static lateral load pattern, and the response spectrum function were defined as stated by the American Standard (ASCE 7-16), the 1997 Uniform Building Code (UBC97), the Egyptian Code for Loads (ECP-201), and the European Standard (EC8). Extensive comparisons of the results obtained by the different codes (including the story displacement, the story drift, and the base shear) were undertaken; to assess the response of moment-resisting multi-story framed buildings under lateral loads. The results revealed that, for all study cases under consideration, both ECP-201 and EC8 gave smaller base shear, displacement, and drift by one third to one fourth, around one fourth, around one fifth, respectively for both the ELF and RSA methods if compared to ASCE 7-16 and UBC97.

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

Observational failure analysis of precast buildings after the 2012 Emilia earthquakes

  • Minghini, Fabio;Ongaretto, Elena;Ligabue, Veronica;Savoia, Marco;Tullini, Nerio
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.327-346
    • /
    • 2016
  • The 2012 Emilia (Italy) earthquakes struck a highly industrialized area including several thousands of industrial prefabricated buildings. Due to the lack of specific design and detailing for earthquake resistance, precast reinforced concrete (RC) buildings suffered from severe damages and even partial or total collapses in many cases. The present study reports a data inventory of damages from field survey on prefabricated buildings. The damage database concerns more than 1400 buildings (about 30% of the total precast building stock in the struck region). Making use of the available shakemaps of the two mainshocks, damage distributions were related with distance from the nearest epicentre and corresponding Pseudo-Spectral Acceleration for a period of 1 second (PSA at 1 s) or Peak Ground Acceleration (PGA). It was found that about 90% of the severely damaged to collapsed buildings included into the database stay within 16 km from the epicentre and experienced a PSA larger than 0.12 g. Moreover, 90% of slightly to moderately damaged buildings are located at less than 25 km from the epicentre and were affected by a PSA larger than 0.06 g. Nevertheless, the undamaged buildings examined are almost uniformly distributed over the struck region and 10% of them suffered a PSA not lower than 0.19g. The damage distributions in terms of the maximum experienced PGA show a sudden increase for $PGA{\geq}0.28g$. In this PGA interval, 442 buildings were collected in the database; 55% of them suffered severe damages up to collapse, 32% reported slight to moderate damages, whereas the remaining 13% resulted undamaged.

Evaluation of Seismic performance of RC setback frames

  • Habibi, Alireza;Vahed, Meisam;Asadi, Keyvan
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.609-619
    • /
    • 2018
  • When the irregularities occurred in buildings, affect their seismic performance. This paper has focused on one of the types of irregularities at the height that named setback in elevation. For this purpose, several multistorey Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks were designed according to new edition of Iranian seismic code. The nonlinear time history analysis was performed to predict the seismic performance of frames subjected to seven input ground motions. The assessment of the seismic performance was done considering both global and local criteria. Results showed that the current edition of Iranian seismic code needs to be modified in order to improve the seismic behaviour of reinforced concrete moment resisting setback buildings. It was also shown that the maximum damages happen at the elements located in the vicinity of the setbacks. Therefore, it is necessary to strengthen these elements by appropriate modification of Iranian seismic code.

국내 고층건물의 RD법에 의한 감쇠율의 진폭의존성 (Amplitude dependent damping ratio of domestic tall building by RD method)

  • 윤성원
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.89-95
    • /
    • 2004
  • The measured damping ratio was analysed to obtain amplitude dependence. Wind-induced vibration of 20 story steel-framed building was measured to investigate amplitude dependence by RD method. Micro-tremo vibrations of 20 RC bearing wall typed buildings were performed to analysis the amplitude dependence by formula proposed by Tamua and ESDU. Amplitude dependent damping in 17 story steel-framed building was showed clearly in the increasing rate of 9%. But Amplitude dependent damping of 17 RC bearing wall typed buildings was very low in the increasing rate of 2.5%. The tendency of dynamic properties of building obtained here are useful for the validation of dynamic properties of buildings in the evaluation of serviceability.

  • PDF

Rebar corrosion effects on structural behavior of buildings

  • Yuksel, Isa
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1111-1133
    • /
    • 2015
  • Rebar corrosion in concrete is one of the main causes of reduction of service life of reinforced concrete buildings. This paper presents the influence of rebar corrosion on the structural behavior of reinforced concrete (RC) buildings subjected to strong earthquake ground motion. Different levels of rebar corrosion scenarios were applied on a typical four story RC frame. The deteriorated conditions as a result of these scenarios include loss in cross-sectional area and loss of mechanical properties of the reinforcement bars, loss in bond strength, and loss in concrete strength and its modulus of elasticity. Dynamic analyses of the frame with different corrosion scenarios are performed with selected strong earthquake ground motion records. The influences of degradation in both concrete and reinforcement on structural behavior are investigated by comparing the various parameters of the frame under different corrosion scenarios with respect to each other. The results show that the progressive deterioration of the frame due to rebar corrosion causes serious structural behavior changes such as change in failure mode. The intensity, propagation time, and extensity of rebar corrosion have very important effects on the level of degradation of steel and concrete, as well as on the earthquake behavior of the structure.

Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers

  • Javidan, Mohammad Mahdi;Nasab, Mohammad Seddiq Eskandari;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.645-664
    • /
    • 2021
  • There is a growing need of seismic retrofit of existing non-seismically designed structures in Korea after the 2016 Gyeongju and 2017 Pohang earthquakes, especially school buildings which experienced extensive damage during those two earthquakes. To this end, a steel multi-slit damper (MSD) was developed in this research which can be installed inside of partition walls of school buildings. Full-scale two-story RC frames were tested with and without the proposed dampers. The frames had structural details similar to school buildings constructed in the 1980s in Korea. The details of the experiments were described in detail, and the test results were validated using the analysis model. The developed seismic retrofit strategy was applied to a case study school building structure, and its seismic performance was evaluated before and after retrofit using the MSD. The results show that the developed retrofit strategy can improve the seismic performance of the structure to satisfy a given target performance level.