• Title/Summary/Keyword: RC bridge columns

Search Result 111, Processing Time 0.022 seconds

Nonlinear Seismic Analysis for Performance Assessment of Hollow RC Bridge Columns with Reinforcement Details for Material Quantity Reduction (물량저감 중공 철근콘크리트 교각의 성능평가를 위한 비선형 지진해석)

  • Kim, Tae Hoon;Lee, Seung Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.221-230
    • /
    • 2014
  • The purpose of this study is to investigate the seismic performance of hollow RC bridge columns with reinforcement details for material quantity reduction. The proposed reinforcement details provide economy, are rational and shorthen the construction periods. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The adopted numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several test specimens investigated. As a result, the proposed reinforcement details for material quantity reduction develop equal performance to that required for existing reinforcement details.

Displacement Ductility Evaluation of Earthquake Experienced RC Bridge Piers with 2.5 Aspect Ratio (지진을 경험한 형상비 2.5 RC 교각의 내진 변위 연성도 평가)

  • 정영수;박창규;이은희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • For the construction of PC bridge piers the implementation of 1992 seismic provisions, longitudinal steels were practically lap-spliced in the plastic hinge region. Experimental investigation was conducted ductility of evaluate the seismic earthquake-experienced reinforced concrete columns with 2,5 aspect ratio. Six test specimens were mode with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=0.1f$\_$ck/A$\_$g/. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that PC bridge piers with lap-spliced longitudinal steels appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility.

Transverse reinforcement for confinement at plastic hinge of circular composite hollow RC columns

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Park, Woo-Sun;Kang, Young Jong
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.387-406
    • /
    • 2016
  • Confined transverse reinforcement was arranged in a plastic hinge region to resist the lateral load that increased the lateral confinement effect in the bridge substructure. Columns increased the seismic performance through securing stiffness and ductility. The calculation method of transverse reinforcements at plastic hinges is reported in the AASHTO-LRFD specification. This specification was only proposed for solid reinforced concrete (RC) columns. Therefore, if this specification is applied for another column as composite column besides the solid RC column, the column cannot be properly evaluated. The application of this specification is particularly limited for composite hollow RC columns. The composite hollow RC column consists of transverse, longitudinal reinforcements, cover concrete, core concrete, and an inner tube inserted in the hollow face. It increases the ductility, strength, and stiffness in composite hollow RC columns. This paper proposes a modified equation for economics and rational design through investigation of displacement ductility when applying the existing specifications at the composite hollow RC column. Moreover, a parametric study was performed to evaluate the detailed behavior. Using these results, a calculation method of economic transverse reinforcements is proposed.

Lateral force-displacement ductility relationship of non-ductile squat RC columns rehabilitated using FRP confinement

  • Galal, K.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.75-89
    • /
    • 2007
  • Post-earthquake reconnaissance and experimental research indicate that squat reinforced concrete (RC) columns in existing buildings or bridge piers are vulnerable to non-ductile shear failure. Recently, several experimental studies were conducted to investigate upgrading the shear resistance capacity of such columns in order to modify their failure mode to ductile one. Among these upgrading methods is the use of fibre-reinforced polymer (FRP) jackets. One of the preferred analytical tools to simulate the response of frame structures to earthquake loading is the lumped plasticity macromodels due to their computational efficiency and reasonable accuracy. In these models, the columns' nonlinear response is lumped at its ends. The most important input data for such type of models is the element's lateral force-displacement backbone curve. The objective of this study is to verify an analytical method to predict the lateral force-displacement ductility relationship of axially and laterally loaded rectangular RC squat columns retrofitted with FRP composites. The predicted relationship showed good accuracy when compared with tests available in the literature.

Seismic Ductility Assessment of RC Bridge Piers With Minor Earthquake Damage By the Quasi Static Test (유사정적실험에 의한 지진이력 철근콘크리트 교각의 내진 연성도 평가)

  • 이은희;정영수;박창규;김영섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.505-511
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2,5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes of which magnitude could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=$0.1f_{ck}A_g. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility, and strain energy ductility.

  • PDF

Seismic Performance Evaluation of Moderate Seismically Designed RC Bridge Piers with Confinement Steel Type (중저진 철근 콘크리트 교각의 횡방향 철근 배근 형태에 따른 내진성능 평가)

  • Park, Jong-Hyup;Kim, Hoon;Lee, Jae-Hoon;Chung, Young-Soo;Cho, Dae-Yeon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.194-199
    • /
    • 2001
  • Lap splice in plastic hinge region is inevitable because of due to constructional joint between footing and column. R/C Circular columns with lap-splice in plastic hinge region are widely used in Korean highway bridges. In addition, these columns which constructed before the seismic design code have a number of structural deficiencies. It is, however, believed that there are not many experimental research works for nonlinear behavior of these columns subjected to earthquake motions. The object of this research is to evaluate the seismic performance of existing circular reinforced concrete bridge piers by the Quasi-static test. Existing reinforced concrete bridge piers were moderate seismically designed in accordance with the conventional provisions of Korea Highway Design Specification. This study has been performed to verify the effect of lap spliced longitudinal steel, confinement steel type and confinement steel ratio far the seismic behavior of reinforced concrete bridge piers. Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as displacement ductility, energy absorption, strength degradation etc.

  • PDF

Relationship between Curvature Ductility and Displacement Ductility of RC Bridge Circular Columns (철근콘크리트 원형교각의 연성도 상관관계에 관한 연구)

  • 손혁수;조재원;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.111-116
    • /
    • 2002
  • The flexural ductility capacity of reinforced concrete columns can be expressed either in terms of curvature ductility or displacement ductility. To evaluate ductility capacity of reinforced concrete columns, analytical models and a non-linear analysis program, NARCC have been developed, which is applicable to the RC columns subjected to seismic loading. The analytical results by using computer program NARCC are in good agreement with the test results. In order to develop relationships between the curvature ductility and the displacement ductility, the analysis for total 21,600 RC circular columns using the computer program NARCC have been carried out for parametric studies. Based on the results from the parametric studies, a correlation equation between the curvature ductility and the displacement ductility was developed.

  • PDF

Seismic Performance Evaluation of Shear-Critical R/C Bridge Piers Retrofitted with Fiber Sheets (섬유 보강된 휨전단 RC교각의 내전성능 평가)

  • 송호진;정영수;김용곤;이은희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.195-202
    • /
    • 2002
  • Lap splices of longitudinal reinforcement steels were practically located in the potential plastic hinge region of most bridge columns that were constructed before the 1992 seismic design provision of Roadway Bridge Design Specification in Korea. The objective of this research is to evaluate the seismic performance of shear-critical reinforced concrete(RC) bridge piers with poor detailing of the starter bars in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity by retrofitting with fiber composites. Seven test specimens in the aspect ratio of 2.5 were made with three confinement ratios and two types of lap splices. Quasi-static test was conducted in a displacement-controlled test mode. A significant reduction of displacement ductility ratios were observed for test columns with lap splices of longitudinal steels.

  • PDF

Confinement Steel Amount for Ductility Demand of RC Bridge Columns under Seismic Loading (지진하중을 받는 철근콘크리트 교각의 소요연성도에 따른 심부구속철근량)

  • Son, Hyeok-Soo;Lee, Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.715-725
    • /
    • 2003
  • This paper is a part of a research program to develop a new design method for reinforced concrete bridge columns under seismic loading. The objectives of this paper are to investigate the relationship between ductility and confinement steel amount and to propose a design equation for reinforced concrete bridge columns. Computer program NARCC was used for parametric study, which was proved to provide good and conservative analytical result especially for deformation capacity and ductility factor compared with test result. A total of 7,200 reinforced concrete columns confined with spirals or perfect circular hoops were selected by combination of variables such as section diameter, aspect ratio, concrete compressive strength, yielding strength of longitudinal and confinement steel, longitudinal steel ratio, axial load ratio, and confinement steel ratio. Based on the parametric study a new design equation for confinement steel amount considering ductility demand was proposed, which can be used in the new seismic design method, i.e. ductility-based seismic design, for RC bridge columns.