• Title/Summary/Keyword: RC I-beams

Search Result 58, Processing Time 0.022 seconds

Detection of flexural damage stages for RC beams using Piezoelectric sensors (PZT)

  • Karayannis, Chris G.;Voutetaki, Maristella E.;Chalioris, Constantin E.;Providakis, Costas P.;Angeli, Georgia M.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.997-1018
    • /
    • 2015
  • Structural health monitoring along with damage detection and assessment of its severity level in non-accessible reinforced concrete members using piezoelectric materials becomes essential since engineers often face the problem of detecting hidden damage. In this study, the potential of the detection of flexural damage state in the lower part of the mid-span area of a simply supported reinforced concrete beam using piezoelectric sensors is analytically investigated. Two common severity levels of flexural damage are examined: (i) cracking of concrete that extends from the external lower fiber of concrete up to the steel reinforcement and (ii) yielding of reinforcing bars that occurs for higher levels of bending moment and after the flexural cracking. The purpose of this investigation is to apply finite element modeling using admittance based signature data to analyze its accuracy and to check the potential use of this technique to monitor structural damage in real-time. It has been indicated that damage detection capability greatly depends on the frequency selection rather than on the level of the harmonic excitation loading. This way, the excitation loading sequence can have a level low enough that the technique may be considered as applicable and effective for real structures. Further, it is concluded that the closest applied piezoelectric sensor to the flexural damage demonstrates higher overall sensitivity to structural damage in the entire frequency band for both damage states with respect to the other used sensors. However, the observed sensitivity of the other sensors becomes comparatively high in the peak values of the root mean square deviation index.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

Effective Moment of Inertia of Flexural Members Based on the Concrete Stress-Strain Curve in EC-2 (EC-2의 콘크리트 응력-변형률 곡선에 기반한 휨부재의 유효단면2차모멘트)

  • Yum, Hwan-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.655-663
    • /
    • 2016
  • The present study shows the moment-average curvature relationship and effective inertia moment of RC beams obtained from the nonlinear analysis based on the parabola-rectangular stress-strain curve defined in EC-2 code. The variables examined are concrete strength and steel ratio, and moment-average curvature relationship and effective inertia moment obtained are compared with those of the current KCI provisions. As the results of the comparison, the followings could be said: Since the KCI provisions(the Branson method) were originally derived based on the experimental data ranged from 2.2 to 4 of $M/M_{cr}$ and 1.3 to 3.5 of $I_{ut}/I_{cr}$, thereby within these ranges the inertia moments obtained from the nonlinear analysis are closely agreed with those predicted by the Branson method. However, beyond those range the remarkable difference could be found between the two results. In particular, for beams having low steel ratio the inertia moment resulted from the nonlinear analysis are significantly smaller than those obtained from the KCI(Branson) method. This result may imply that the deflection of lightly reinforced members, such as slabs in buildings, becomes much larger than those calculated according to the current design provisions.

Nonlinear 3-D behavior of shear-wall dominant RC building structures

  • Balkaya, Can;Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The behavior of shear-wall dominant, low-rise, multistory reinforced concrete building structures is investigated. Because there are no beams or columns and the slab and wall thicknesses are approximately equal, available codes give little information relative to design for gravity and lateral loads. Items which effect the analysis of shear-wall dominant building structures, i.e., material nonlinearity including rotating crack capability, 3-D behavior, slab-wall interaction, floor flexibilities, stress concentrations around openings, the location and the amount of main discrete reinforcement are investigated. For this purpose 2 and 5 story building structures are modelled. To see the importance of 3-D modelling, the same structures are modelled by both 2-D and 3-D models. Loads are applied first the vertical then lateral loads which are static equivalent earthquake loads. The 3-D models of the structures are loaded in both in the longitudinal and transverse directions. A nonlinear isoparametric plate element with arbitrarily places edge nodes is adapted in order to consider the amount and location of the main reinforcement. Finally the importance of 3-D effects including the T-C coupling between walls are indicated.

Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength

  • Safa, M.;Shariati, M.;Ibrahim, Z.;Toghroli, A.;Baharom, Shahrizan Bin;Nor, Norazman M.;Petkovic, Dalibor
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.679-688
    • /
    • 2016
  • Structural design of a composite beam is influenced by two main factors, strength and ductility. For the design to be effective for a composite beam, say an RC slab and a steel I beam, the shear strength of the composite beam and ductility have to carefully estimate with the help of displacements between the two members. In this investigation the shear strengths of steel-concrete composite beams was analyzed based on the respective variable parameters. The methodology used by ANFIS (Adaptive Neuro Fuzzy Inference System) has been adopted for this purpose. The detection of the predominant factors affecting the shear strength steel-concrete composite beam was achieved by use of ANFIS process for variable selection. The results show that concrete compression strength has the highest influence on the shear strength capacity of composite beam.

Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction

  • Dadmand, Behrooz;Pourbaba, Masoud;Sadaghian, Hamed;Mirmiran, Amir
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.195-209
    • /
    • 2020
  • This study investigates the behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) with hybrid macro-micro steel and macro steel-polypropylene (PP) fibers. Compression, direct and indirect tension tests were carried out on cubic and cylindrical, dogbone and prismatic specimens, respectively. Three types of macro steel fibers, i.e., round crimped (RC), crimped (C), and hooked (H) were combined with micro steel (MS) and PP fibers in overall ratios of 2% by volume. Additionally, numerical analyses were performed to validate the test results. Parameters studied included, fracture energy, tensile strength, compressive strength, flexural strength, and residual strength. Tests showed that replacing PP fibers with MS significantly improves all parameters particularly flexural strength (17.38 MPa compared to 37.71 MPa). Additionally, the adopted numerical approach successfully captured the flexural load-deflection response of experimental beams. Lastly, the proposed regression model for the flexural load-deflection curve compared very well with experimental results, as evidenced by its coefficient of correlation (R2) of over 0.90.

Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.267-287
    • /
    • 2016
  • The seismic performance of the ordinary steel reinforced concrete (SRC) columns has no significant improvement compared to the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type shaped steel were put forward on this background, and they were named as enlarging cross-shaped steel and diagonal cross-shaped steel for short. The seismic behavior and carrying capacity of new-type SRC columns have been researched theoretically and experimentally, while the shear behavior remains unclear when the new-type columns are joined onto SRC beams. This paper presents an experimental study to investigate the shear capacity of new-type SRC joints. For this purpose, four new-type and one ordinary SRC joints under low reversed cyclic loading were tested, and the failure patterns, load-displacement hysteretic curves, joint shear deformation and steel strain were also observed. The ultimate shear force of joint specimens was calculated according to the beam-end counterforce, and effects of steel shape, load angel and structural measures on shear capacity of joints were analyzed. The test results indicate that: (1) the new-type SRC joints display shear failure pattern and has higher shear capacity than the ordinary one; (2) the oblique specimens have good bearing capacity if designed reasonably; and (3) the two proposed construction measures have little effect on the shear capacity of SRC joints embedded with diagonal cross-shaped steel. Based on the mechanism observed from the test, the formulas for calculating ultimate shear capacity considering the main factors (steel web, stirrup and axial compression ratio) were derived, and the calculated results agreed well with the experimental and simulated data.

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.