• 제목/요약/키워드: RC I-beams

검색결과 58건 처리시간 0.022초

The design of reinforced concrete beams for shear in current practice: A new analytical model

  • Londhe, R.S.
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.225-235
    • /
    • 2009
  • The present paper reviews the shear design (of reinforced concrete beam) provisions of four different national codes and proposes a new but simplified shear strength empirical expression, incorporating variables such as compressive strength of concrete, percentage of longitudinal and vertical steel/s, depth of beam in terms of shear span-to-depth ratio, for reinforced concrete (RC) beams without shear reinforcement. The expression is based on the experimental investigation on RC beams without shear reinforcement. Further, the comparisons of shear design provisions of four National codes viz.: (i) IS 456-2000, (iii) BS 8110-1997, (iv) ACI 318-2002 (v) EuroCode-2-2002 and the proposed expression for the prediction of shear capacity of normal beam/s, have been made by solving a numerical example. The results of the numerical example worked out suggest that there is need for revision in the shear design procedure of different codes. Also, the proposed expression is less conservative among the IS, BS & Eurocode.

고강도 RC보의 탄소섬유쉬트 보강에 대한 연구 (A Study on Carbon Fiber Sheet Rehabilitation of Reinforced High Strength Concrete Beams)

  • 김종효;곽계환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.450-455
    • /
    • 1997
  • In recent years the research and development about the new material proceeds rapidly and actively in building industry. We are concerned with high-strength concrete as a new material. As the building structure becomes bigger, higher and more specialized, so does the demand of material and member with high strength for building expands greatly. In the future, we will quite need to research repair and rehabilitation to make high strength concrete structural building for our safe. So, I did an study on carbon fiber sheet rehabilitation(CFSR) of reinforced high strength concrete beams. The carbon fiber reinforced plastic(CFRP) bonding method is widely used for reinforcing the existing concrete structure among the various methods. The test results indicate that CFS is very effective for strengthening the damaged beams and controlling deflections of the repaired beams. When carbon fiber sheet rehabilitation of reinforced high strength concrete beams happened diagonal crack, the increase in the number of CFS layer didn't effect the increase in strength of beams. Also, by changing the CFS stick position gave diversified ultimate load in CFSR beams.

  • PDF

Glass FRP-Bonded RC Beams under Cyclic Loading

  • Tan, Kiang-Hwee;Saha, Mithun-Kumar
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.45-55
    • /
    • 2007
  • Ten beams bonded with glass fiber reinforced polymer (GFRP) laminates were tested under cyclic loading with the load range and the FRP reinforcement ratio as test parameters. The maximum load level during cyclic loading was 55%, 65% and 75% of the static flexural strength while the minimum load level was kept constant at 35%. Deflections of the beams at the end of 525000 cycles were found to increase by 16% and 44% when the maximum load level was increased from 55% to 65% and 75% of the static flexural strength, respectively. Beams with FRP reinforcement ratios of 0.64% and 1.28% were found to exhibit lesser deflections of about 15% and 20%, respectively, compared to a similar beam without FRP reinforcement. An analytical approach based on cycle-dependent effective moduli of elasticity of concrete and FRP reinforcement is presented and found to predict the deflections of the test beams well.

I형강 합성 중공바닥판의 휨거동 (Flexural Behavior of I-beam Composite Hollow Slabs)

  • 김대호;심창수;박창규;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.421-426
    • /
    • 2003
  • For the replacement of deteriorated concrete decks or wider-span slab, composite slab could be very attactive due to higher stiffness and strength. Based on the previous research, a modified I-beam composite hollow slab was suggested. In order to investigate the static flexural behavior of the proposed composite slab and to suggest its flexural design method, experiments were performed. Judging from the tests, a composite slab with I-beam having a semi-circle hole showed better structural performance. The effect of web details on the flexural stiffness was negligible. Flexural stiffness, ultimate strength, and ductility of the composite slabs were significantly greater than the RC slab due to composite action. While the failure of the RC slab was punching shear failure, the composite hollow slab showed flexural cracking and failure by yielding of the I-beams and crushing of concrete. Therefore, the current one-way design concept is appropriate for the design of I-beam composite hollow slab.

  • PDF

Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization

  • Li, Ning;Asteris, Panagiotis G.;Tran, Trung-Tin;Pradhan, Biswajeet;Nguyen, Hoang
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.733-745
    • /
    • 2022
  • This study proposed a robust artificial intelligence (AI) model based on the social behaviour of the imperialist competitive algorithm (ICA) and artificial neural network (ANN) for modelling the deflection of reinforced concrete beams, abbreviated as ICA-ANN model. Accordingly, the ICA was used to adjust and optimize the parameters of an ANN model (i.e., weights and biases) aiming to improve the accuracy of the ANN model in modelling the deflection reinforced concrete beams. A total of 120 experimental datasets of reinforced concrete beams were employed for this aim. Therein, applied load, tensile reinforcement strength and the reinforcement percentage were used to simulate the deflection of reinforced concrete beams. Besides, five other AI models, such as ANN, SVM (support vector machine), GLMNET (lasso and elastic-net regularized generalized linear models), CART (classification and regression tree) and KNN (k-nearest neighbours), were also used for the comprehensive assessment of the proposed model (i.e., ICA-ANN). The comparison of the derived results with the experimental findings demonstrates that among the developed models the ICA-ANN model is that can approximate the reinforced concrete beams deflection in a more reliable and robust manner.

Influence of joint modelling on the pushover analysis of a RC frame

  • Costa, Ricardo;Providencia, Paulo;Ferreira, Miguel
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.641-652
    • /
    • 2017
  • In general, conventional analysis and design of reinforced concrete (RC) frame structures overlook the role of beam-column (RCBC) joints. Nowadays, the rigid joint model is one of the most common for RCBC joints: the joint is assumed to be rigid (unable to deform) and stronger than the adjacent beams and columns (does not fail before them). This model is popular because (i) the application of the capacity design principles excludes the possibility of the joint failing before the adjacent beams and (ii) many believe that the actual behaviour of RCBC joints designed according to the seismic codes produced mainly after the 1980s can be assumed to be nominally rigid. This study investigates the relevance of the deformation of RCBC joints in a standard pushover analysis at several levels: frame, storey, element and cross-section. Accordingly, a RC frame designed according to preliminary versions of EN 1992-1-1 and EN 1998-1 was analysed, considering the nonlinear behaviour of beams and columns by means of a standard sectional fibre model. Two alternative models were used for the RCBC joints: the rigid model and an explicit component based nonlinear model. The effect of RCBC joints modelling was found to be twofold: (i) the flexibility of the joints substantially increases the frame lateral deformation for a given load (30 to 50%), and (ii) in terms of seismic performance, it was found that joint flexibility (ii-1) appears to have a minor effect on the force and displacement corresponding to the performance point (seismic demand assessed at frame level), but (ii-2) has a major influence on the seismic demand when assessed at storey, element and cross-section levels.

교량용 I형강 접합 절곡강합성 바닥판의 휨강성 분석 (Analysis For Effective Moment For Iinertia For Corrugated Steel-Concrete Composite Deck with I-beam Welded)

  • 손창두;박준명;한경봉;김준원;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.209-212
    • /
    • 2008
  • I형강 접합 절곡 강합성 바닥판은 절곡 바닥판내에 I형강을 매입하여 기존의 현장타설 철근콘크리트바닥판보다 경량화되고 하중저항성능 및 시공성을 향상시킨 강합성 바닥판이다. 현재 일반적인 철근콘크리트 구조물의 유효휨강성에 대한 계산은 도로교설계기준 및 ACI에서 제안하고 있는 방법을 사용하고 있다. 본 논문에서는 도로교설계기준 및 ACI에서 제안된 유효휨강성에 대한 산정 방법과 CEB-FIP MC-90에서 제안하고 있는 방법을 사용해 I형강 접합절곡강합성 바닥판의 유효휨강성을 계산하고 그에 대한 적합성을 평가하였다. 또한 전단연결재의 유 무, 단면의 변화, 부재연결 그리고 일반철근콘크리트보와의 비교등 4가지 실험변수를 두고 총 5개의 실험체를 제작 실험하였고 실험결과와 이론식으로 산정된 휨강성값을 비교,평가하여 실험변수에 따른 휨강성의 변화를 분석하였다. 실험결과 CEB-FIP MC-90에서 제안하고 있는 방법이 ACI에서 제안하고 있는 방법보다 만족스러운 결과를 나타냈으며, 전단연결재가 있고 콘크리트와 바닥판의 부착면적이 많은 경우에 하중저항 성능과 휨강성이 높게 나타났다.

  • PDF

FREP로 보강된 RC보의 보강효과 평가에 관한 기초적 연구 (A Fundamental Study on Reinforcement Effect Estimation of RC Beams Strengthened by FREP)

  • 강성후;박선준;김민성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.585-590
    • /
    • 2003
  • It analyzed the reinforcement effect according to reinforced period for FREP. It found that reinforcement effect of P-Type that was reinforced during the usage decreased compared to I-Type that was reinforced before the usage. So when reinforcing a existing structure that is being used, it should consider the stress that is produced due to the fixed load. It evaluated bending and shear of RC reinforcing beam based on the test and analytical conditions of this study. It found that stress concentration was concentrated due to rapid change of bending rigidity in reinforced cutting part as a result of excessive reinforcement thickness of FREP. It resulted in rip-off failure. It means that it should evaluate the shear when designing reinforcement.

  • PDF

콘크리트 기둥-강재 보 외부 접합부의 내진성능(I. 실험) (Seismic Response of Exterior RC Column-to-Steel Beam Connections (I. Experiment))

  • 조순호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.275-282
    • /
    • 2000
  • The seismic behavior of moment connections consisting of reinforced concrete columns and steel beams is investigated based on four 2/3 scale tests of exterior beam-column joints subject to reversed cyclic loading. The major test parameters were the number of hoops the isolated concrete contribution and the use of headed studs in the joint regions between columns and beams. Their influence on the seismic response of the connections is presented and compared. Among them the CF3 specimen containing two hoops each in the joint and column regions above and below exhibited the most favourable hysteretic response. This indicates that this type of joint details can be used in the low seismic areas such as Korea.

  • PDF

Experimental and numerical study on the structural behavior of Multi-Cell Beams reinforced with metallic and non-metallic materials

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ahmed K. Fadel;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.611-633
    • /
    • 2024
  • This study intends to investigate the response of multi-cell (MC) beams to flexural loads in which the primary reinforcement is composed of both metallic and non-metallic materials. "Multi-cell" describes beam sections with multiple longitudinal voids separated by thin webs. Seven reinforced concrete MC beams measuring 300×200×1800 mm were tested under flexural loadings until failure. Two series of beams are formed, depending on the type of main reinforcement that is being used. A control RC beam with no openings and six MC beams are found in these two series. Series one and two are reinforced with metallic and non-metallic main reinforcement, respectively, in order to maintain a constant reinforcement ratio. The first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were among the structural parameters of the beams under investigation that were documented. The primary variables that vary are the kind of reinforcing materials that are utilized, as well as the kind and quantity of mesh layers. The outcomes of this study that looked at the experimental and numerical performance of ferrocement reinforced concrete MC beams are presented in this article. Nonlinear finite element analysis (NLFEA) was performed with ANSYS-16.0 software to demonstrate the behavior of composite MC beams with holes. A parametric study is also carried out to investigate the factors, such as opening size, that can most strongly affect the mechanical behavior of the suggested model. The experimental and numerical results obtained demonstrate that the FE simulations generated an acceptable degree of experimental value estimation. It's also important to demonstrate that, when compared to the control beam, the MC beam reinforced with geogrid mesh (MCGB) decreases its strength capacity by a maximum of 73.33%. In contrast, the minimum strength reduction value of 16.71% is observed in the MC beams reinforced with carbon reinforcing bars (MCCR). The findings of the experiments on MC beams with openings demonstrate that the presence of openings has a significant impact on the behavior of the beams, as there is a decrease in both the ultimate load and maximum deflection.