• Title/Summary/Keyword: RBF neural network

Search Result 178, Processing Time 0.029 seconds

River stage forecasting models using support vector regression and optimization algorithms (Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

사후 확률.확률 밀도 함수의 추정과 Probabilistic neural network을 이요한 모음 인식에 의한 평가

  • 허강인;이광석;김명기
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.21-27
    • /
    • 1993
  • 계층형 신경망은 패턴 분류를 위해 사용되어 왔다. 이것은 주어진 교사패턴들의 학습으로 원하는 입력-출력 간의 매핑을 할 수 있기 때문이다. 신경망은 타겟ㅌ트 패턴이 입력 패턴의 카테고리에 일치할 때 타겟트 패턴을 학습하므로서 사후 확률을 근사화할 수 있다. 그리고 입력 공간을 부분 공간으로 나누어 학습 데이터들의 비율로서 만든 타겟트 벡터들로 학습한 신경망은 확률밀도 함수를 나타낼 수 있다. 본 연구에서는 역전파 학습법을 이용한 계층형 NN 과 코드북으로서 사후 확률과 확률밀도함수의 측정방법을 제안하였다. VQ 로 추정한 사후확률고 확률밀도함수를 이용하여 학습이 필요없는 RBF network 의 일종인 PNN으로 모음 인식을 수행 하였다. 인식 실험에서 PNN 의 결과는 역전파 학습법을 이용항 3층 신경망과 VQ 의 평균 인식율과 비교되었다. VQ-PNN의 인식율이 다른 것보다 우수하게 나타났다.

  • PDF

Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks

  • Alexandridis, Alex;Stavrakas, Ilias;Stergiopoulos, Charalampos;Hloupis, George;Ninos, Konstantinos;Triantis, Dimos
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.919-932
    • /
    • 2015
  • This paper presents a new method for assessing the three-point-bending (3PB) strength of mortar beams in a non-destructive manner, based on neural network (NN) models. The models are based on the radial basis function (RBF) architecture and the fuzzy means algorithm is employed for training, in order to boost the prediction accuracy. Data for training the models were collected based on a series of experiments, where the cement mortar beams were subjected to various bending mechanical loads and the resulting pressure stimulated currents (PSCs) were recorded. The input variables to the NN models were then calculated by describing the PSC relaxation process through a generalization of Boltzmannn-Gibbs statistical physics, known as non-extensive statistical physics (NESP). The NN predictions were evaluated using k-fold cross-validation and new data that were kept independent from training; it can be seen that the proposed method can successfully form the basis of a non-destructive tool for assessing the bending strength. A comparison with a different NN architecture confirms the superiority of the proposed approach.

Application of Self-Organizing Map for the Analysis of Rainfall-Runoff Characteristics (강우-유출특성 분석을 위한 자기조직화방법의 적용)

  • Kim, Yong Gu;Jin, Young Hoon;Park, Sung Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.61-67
    • /
    • 2006
  • Various methods have been applied for the research to model the relationship between rainfall-runoff, which shows a strong nonlinearity. In particular, most researches to model the relationship between rainfall-runoff using artificial neural networks have used back propagation algorithm (BPA), Levenberg Marquardt (LV) and radial basis function (RBF). and They have been proved to be superior in representing the relationship between input and output showing strong nonlinearity and to be highly adaptable to rapid or significant changes in data. The theory of artificial neural networks is utilized not only for prediction but also for classifying the patterns of data and analyzing the characteristics of the patterns. Thus, the present study applied self?organizing map (SOM) based on Kohonen's network theory in order to classify the patterns of rainfall-runoff process and analyze the patterns. The results from the method proposed in the present study revealed that the method could classify the patterns of rainfall in consideration of irregular changes of temporal and spatial distribution of rainfall. In addition, according to the results from the analysis the patterns between rainfall-runoff, seven patterns of rainfall-runoff relationship with strong nonlinearity were identified by SOM.

A credit prediction model of a capital company′s customers using genetic algorithm based integration of multiple classifiers (유전자 알고리즘기반 복수 분류모형 통합에 의한 할부금융고객의 신용예측모형)

  • 이웅규;김홍철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • 본 연구에서는 할부금융시장에서의 고객신용예측을 위한 모형으로 여러 가지 인공신경망(Neural Network) 모형들을 유전자 알고리즘(Genetic Algorithm)을 이용하여 통합한 신용예측모형을 제안한다. 10개의 학습된 인공신경망 모형들을 유전자알고리즘을 이용하여 종류별로 통합하여 MLP(Multi-Layered Perceptrons), Linear, RBF(Radial Basis Function) 세 가지의 대표모델을 얻고 이를 다시 하나의 인공신경망 모델로 통합하였다. 이를 통합되기 이전의 각각의 인공신경망 모형들과 성능을 비교, 분석하여 본 연구에서 제안한 통합모형의 유효성과 통합방법의 타당성을 제시하였다.

  • PDF

EEG Signal Prediction Using Feedback Structured Adaptive RF Filter (피드백 구조의 적응 RF 필터를 이용한 EEG 신호 예측)

  • Kim, Hyun-Sool;Woo, Yong-Ho;Kim, Taek-Soo;Choi, Youn-Ho;Park, Sang-Hui
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.282-285
    • /
    • 1995
  • In this paper, we present a feedback structured adaptive RF filter based on the recursive modified Gram-Schmidt algorithm for short-term prediction of EEG signal. And the performance of this proposed filter is compared with those of linear AR model, RF filter, Volterra filter and RBF neural network as single-step prediction and multi-step prediction. The results show the superiority of this proposed filter in prediction of EEG signals.

  • PDF

Modeling of Plasma Process Using Support Vector Machine (Support Vector Machine을 이용한 플라즈마 공정 모델링)

  • Kim, Min-Jae;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.211-213
    • /
    • 2006
  • In this study, plasma etching process was modeled by using support vector machine (SVM). The data used in modeling were collected from the etching of silica thin films in inductively coupled plasma. For training and testing neural network, 9 and 6 experiments were used respectively. The performance of SVM was evaluated as a function of kernel type and function type. For the kernel type, Epsilon-SVR and Nu-SVR were included. For the function type, linear, polynomial, and radial basis function (RBF) were included. The performance of SVM was optimized first in terms of kernel type, then as a function of function type. Five film characteristics were modeled by using SVM and the optimized models were compared to statistical regression models. The comparison revealed that statistical regression models yielded better predictions than SVM.

  • PDF

Car Plate Recognition using Morphological Information and Enhanced Neural Network (형태학적 정보와 개선된 신경망을 이용한 차량 번호판 인식)

  • 임은경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.192-197
    • /
    • 2004
  • 본 논문에서는 수평ㆍ수직 에지의 형태학적 정보를 이용한 차량 번호판 추출과 개선된 RBF 네트워크를 이용한 차량 번호판 인식 시스템을 제안한다. 번호판 영역은 수평ㆍ수직 에지의 형태학적 정보를 이용하여 추출하고 개별 문자는 히스토그램 방법과 위치 정보를 이용한 방법에 윤곽선 추적 알고리즘을 병합하여 추출한다. 개별 문자 인식은 ARTI 알고리즘을 개선하여 지도 학습 방법과 결합한 개선된 신경망을 제안하여 차량 번호판 인식에 적용한다. 제안된 방법의 성능을 확인하기 위하여 트루 컬러 차량 영상 155개와 그레이 컬러 차량 영상 100개를 대상으로 실험한 결과, 수평ㆍ수직 에지의 형태학적 정보를 이용한 차량 번호판 추출 방법이 임계화를 이용한 차량 번호판 추출 방법, RGB와 HSI 컬러 정보를 각각 이용한 차량 번호판 추출 방법보다 추출률이 개선되었으며, 인식 성능도 개선된 신경망의 학습 알고리즘이 기존의 학습 알고리즘들보다 우수한 성능이 있음을 확인하였다.

  • PDF

A Study On Three-dimensional Face Recognition Model Using PCA : Comparative Studies and Analysis of Model Architectures (PCA를 이용한 3차원 얼굴인식 모델에 관한 연구 : 모델 구조 비교연구 및 해석)

  • Park, Chan-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1373-1374
    • /
    • 2015
  • 본 논문은 복잡한 비선형 모델링 방법인 다항식 기반 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 벡터공간에서 임의의 비선형 경계를 찾아 두 개의 집합을 분류하는 방법으로 주어진 조건하에서 수학적으로 최적의 해를 찾는 SVM(Support Vector Machine)를 사용하여 3차원 얼굴인식 모델을 설계하고 두 모델의 3차원 얼굴 인식률을 비교한다. 3D스캐너를 통해 3차원 얼굴형상을 획득하고 획득한 영상을 전처리 과정에서 포인트 클라우드 정합과 포즈보상을 수행한다. 포즈보상 통해 정면으로 재배치한 영상을 Multiple Point Signature기법을 이용하여 얼굴의 깊이 데이터를 추출한다. 추출된 깊이 데이터를 RBFNN과 SVM의 입력패턴과 출력으로 선정하여 모델을 설계한다. 각 모델의 효율적인 학습을 위해 PCA 알고리즘을 이용하여 고차원의 패턴을 축소하여 모델을 설계하고 인식 성능을 비교 및 확인한다.

  • PDF

Applied AI neural network dynamic surface control to nonlinear coupling composite structures

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.571-581
    • /
    • 2024
  • After a disaster like the catastrophic earthquake, the government have to use rapid assessment of the condition (or damage) of bridges, buildings and other infrastructures is mandatory for rapid feedbacks, rescue and post-event management. This work studies the tracking control problem of a class of strict-feedback nonlinear systems with input saturation nonlinearity. Under the framework of dynamic surface control design, RBF neural networks are introduced to approximate the unknown nonlinear dynamics. In order to address the impact of input saturation nonlinearity in the system, an auxiliary control system is constructed, and by introducing a class of first-order low-pass filters, the problems of large computation and computational explosion caused by repeated differentiation are effectively solved. In response to unknown parameters, corresponding adaptive updating control laws are designed. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results of linear and nonlinear structures show that the proposed method is able to identify structural parameters and their changes due to damage and unknown excitations. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.