• 제목/요약/키워드: RBF Neural Network

검색결과 178건 처리시간 0.029초

Using Neural Networks to Forecast Price in Competitive Power Markets

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.271-274
    • /
    • 2005
  • Under competitive power markets, various long-term and short-term contracts based on spot price are used by producers and consumers. So an accurate forecasting for spot price allow market participants to develop bidding strategies in order to maximize their benefit. Artificial Neural Network is a powerful method in forecasting problem. In this paper we used Radial Basis Function(RBF) network to forecast spot price. To learn ANN, in addition to price history, we used some other effective inputs such as load level, fuel price, generation and transmission facilities situation. Results indicate that this forecasting method is accurate and useful.

  • PDF

RBF 신경망을 이용한 실루엣 기반 유아 동작 인식 (Silhouette-based motion recognition for young children using an RBF network)

  • 김혜정;이경미
    • 인터넷정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.119-129
    • /
    • 2007
  • 본 논문에서는 두 대의 카메라를 직각으로 배치하여 얻은 동영상에서 인체의 실루엣을 이용하여 동작을 인식하는 방법을 제안한다. 제안된 시스템은 실루엣에서 전역 특징과 지역 특징을 추출하며, 이 특징들은 정적인 프레임에만 있느냐에 따라 정적 특징과 동적 특징으로 다시 나뉜다. 추출된 특징들은 RBF 신경망을 훈련시키기 위해 사용된다. 제안된 신경망은 정적 특징을 입력층으로 보내고, 동적 특징은 인식을 위한 추가적인 특징으로 이용한다. 본 논문에서 제안된 신경망 동작 인식 시스템은 유아들의 동작 교육에 적용되었다. 동작 교육을 위해 제시되는 기본 동작은 걷기, 뛰기, 앙감질 등의 이동 동작과 구부리기, 뻗기, 균형 잡기, 회전하기 등 비 이동 동작으로 구분된다. 제안된 시스템은 동작교육을 위해 7가지 기본 동작을 학습시킨 신경망으로 성공적으로 동작 인식을 하였다. 제안된 시스템은 유아의 공간감각 계발을 위한 동작교육 시스템에 활용될 수 있다.

  • PDF

Application of artificial neural networks to predict total dissolved solids in the river Zayanderud, Iran

  • Gholamreza, Asadollahfardi;Afshin, Meshkat-Dini;Shiva, Homayoun Aria;Nasrin, Roohani
    • Environmental Engineering Research
    • /
    • 제21권4호
    • /
    • pp.333-340
    • /
    • 2016
  • An Artificial Neural Network including a Radial Basis Function (RBF) and a Time Delay Neural Network (TDNN) was used to predict total dissolved solid (TDS) in the river Zayanderud. Water quality parameters in the river for ten years, 2001-2010, were prepared from data monitored by the Isfahan Regional Water Authority. A factor analysis was applied to select the inputs of water quality parameters, which obtained total hardness, bicarbonate, chloride and calcium. Input data to the neural networks were pH, $Na^+$, $Mg^{2+}$, Carbonate ($CO{_3}^{-2}$), $HCO{_3}^{-1}$, $Cl^-$, $Ca^{2+}$ and Total hardness. For learning process 5-fold cross validation were applied. In the best situation, the TDNN contained 2 hidden layers of 15 neurons in each of the layers and the RBF had one hidden layer with 100 neurons. The Mean Squared Error and the Mean Bias Error for the TDNN during the training process were 0.0006 and 0.0603 and for the RBF neural network the mentioned errors were 0.0001 and 0.0006, respectively. In the RBF, the coefficient of determination ($R^2$) and the index of agreement (IA) between the observed data and predicted data were 0.997 and 0.999, respectively. In the TDNN, the $R^2$ and the IA between the actual and predicted data were 0.957 and 0.985, respectively. The results of sensitivity illustrated that $Ca^{2+}$ and $SO{_4}^{2-}$ parameters had the highest effect on the TDS prediction.

An Neural Network Direct Controller for Nonlinear Systems

  • Nam Kee Hwan;Bae Cheo Soo;Cho Hyeon Seob;Ra Sang Dong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.491-493
    • /
    • 2004
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The controller is composed of an approximate controller and a neural network auxiliary controller. The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not put too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

  • PDF

Direct Controller for Nonlinear System Using a Neural Network

  • 배철수;박영철;남기환;강용석;김태우;황선기;김현열;김문환
    • 한국정보전자통신기술학회논문지
    • /
    • 제5권1호
    • /
    • pp.7-12
    • /
    • 2012
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The controller is composed of an approximate controller and a neural network auxiliary controller. The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not put too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

신경망을 이용한 비선형 플렌트 최적제어에 관한 연구 (An Optimized Controller for Nonlinear Plant Based on Neural Network)

  • ;;조현섭;박왈서
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2490-2492
    • /
    • 2002
  • Design of controller of nonlinear systems is an important part of control research. In this paper, a controller for nonlinear plants using a neural network is presented. The controller is a combination of an approximate PID controller and a neural network controller. The PID controller be used for stabilizing the process and for compensating for possible disturbances, a neural network act as feedforward controller. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system and meets the demands of the system.

  • PDF

S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구 (A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines)

  • 윤마루;박승범;선우명호;이승종
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

오차를 기반으로한 RBF 신경회로망 적응 백스테핑 제어기 설계 (The Adaptive Backstepping Controller of RBF Neural Network Which is Designed on the Basis of the Error)

  • 김현우;윤육현;정진한;박장현
    • 한국정밀공학회지
    • /
    • 제34권2호
    • /
    • pp.125-131
    • /
    • 2017
  • 2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.

RBF 신경회로망을 이용한 교류 동기 모터의 강인 속도 제어 (Robust Speed Control of AC Permanent Magnet Synchronous Motor using RBF Neural Network)

  • 김은태;이성열
    • 전자공학회논문지SC
    • /
    • 제40권4호
    • /
    • pp.243-250
    • /
    • 2003
  • 본 논문에서는 RBF 신경망 외란 관측기를 이용한 영구자석형 동기모터의 속도추종 제어기를 제안한다. 먼저 공칭 모델에 대하여 입출력 선형화에 기반한 속도 제어기를 설계하고 RBF 신경망 외란 관측기에 의해 시스템의 블확실성을 보상한다. 시스템의 파라미터와 부하 토크의 변동을 동시에 추정하는 RBF 신경망 외란 관측기를 이용함으로써 제안한 제어 알고리즘은 시스템의 불화실성에 강인한 특성을 갖는다. 마지막으로 모의실험을 통하여 제안된 제어기의 타당성을 검증한다.

Daily Electric Load Forecasting Based on RBF Neural Network Models

  • Hwang, Heesoo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.39-49
    • /
    • 2013
  • This paper presents a method of improving the performance of a day-ahead 24-h load curve and peak load forecasting. The next-day load curve is forecasted using radial basis function (RBF) neural network models built using the best design parameters. To improve the forecasting accuracy, the load curve forecasted using the RBF network models is corrected by the weighted sum of both the error of the current prediction and the change in the errors between the current and the previous prediction. The optimal weights (called "gains" in the error correction) are identified by differential evolution. The peak load forecasted by the RBF network models is also corrected by combining the load curve outputs of the RBF models by linear addition with 24 coefficients. The optimal coefficients for reducing both the forecasting mean absolute percent error (MAPE) and the sum of errors are also identified using differential evolution. The proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange. Simulation results reveal satisfactory forecasts: 1.230% MAPE for daily peak load and 1.128% MAPE for daily load curve.