• 제목/요약/키워드: RBF Neural Network

검색결과 178건 처리시간 0.028초

직교함수 신경회로망에 대한 연구 (The Study of Orthogonal Neural Network)

  • 권성훈;이현관;엄기환
    • 한국정보통신학회논문지
    • /
    • 제4권1호
    • /
    • pp.145-154
    • /
    • 2000
  • 본 논문에서는 제어대상의 사전정보가 미지인 경우의 동정 및 제어를 위하여 직교함수 신경회로망을 제안한다. 제안하는 직교함수 신경회로망은 은닉층 앞에 버퍼층을 사용하고 은닉층에는 시그모이드 함수와 시그모이드 함수의 도함수로 유도한 RBF를 이용한 직교함수를 사용하였다. 제안한 방식의 유용성을 확인하기 위하여 Narendra 모델의 동정 시뮬레이션에 의해 동정능력을 검토하였다. 또한, 제어 시스템을 구성하고 시뮬레이션 및 실험을 통하여 유용성을 확인하였다.

  • PDF

Recognition of the Passport by Using Fuzzy Binarization and Enhanced Fuzzy Neural Networks

  • Kim, Kwang-Baek
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.603-607
    • /
    • 2003
  • The judgment of forged passports plays an important role in the immigration control system, for which the automatic and accurate processing is required because of the rapid increase of travelers. So, as the preprocessing phase for the judgment of forged passports, this paper proposed the novel method for the recognition of passport based on the fuzzy binarization and the fuzzy RBF neural network newly proposed. first, for the extraction of individual codes being recognized, the paper extracts code sequence blocks including individual codes by applying the Sobel masking, the horizontal smearing and the contour tracking algorithm in turn to the passport image, binarizes the extracted blocks by using the fuzzy binarization based on the membership function of trapezoid type, and, as the last step, recovers and extracts individual codes from the binarized areas by applying the CDM masking and the vertical smearing. Next, the paper proposed the enhanced fuzzy RBF neural network that adapts the enhanced fuzzy ART network to the middle layer and applied to the recognition of individual codes. The results of the experiment for performance evaluation on the real passport images showed that the proposed method in the paper has the improved performance in the recognition of passport.

  • PDF

Context-based 클러스터링에 의한 Granular-based RBF NN의 설계 (The Design of Granular-based Radial Basis Function Neural Network by Context-based Clustering)

  • 박호성;오성권
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1230-1237
    • /
    • 2009
  • In this paper, we develop a design methodology of Granular-based Radial Basis Function Neural Networks(GRBFNN) by context-based clustering. In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The output space is granulated making use of the K-Means clustering while the input space is clustered with the aid of a so-called context-based fuzzy clustering. The number of information granules produced for each context is adjusted so that we satisfy a certain reconstructability criterion that helps us minimize an error between the original data and the ones resulting from their reconstruction involving prototypes of the clusters and the corresponding membership values. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the values of the context and the prototypes in the input space. The other parameters of these local functions are subject to further parametric optimization. Numeric examples involve some low dimensional synthetic data and selected data coming from the Machine Learning repository.

FNN에 의한 선박의 제어 (A ship control by fuzzy neutral network)

  • 강창남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1703_1704
    • /
    • 2009
  • Fuzzy neural ship controllers is used in ship steering control. It can make full use of the advantage of all kinds of intelligent algorithms. This provides an efficient way for this paper. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors. Utilizing the designed network to substitute the conventional fuzzy inference, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The ship control quality is effectively improved in case of appending additional sea state disturbance. The performance of controller is evaluated by the system simulation using simulink tools.

  • PDF

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

Recognition of Passports using CDM Masking and ART2-based Hybrid Network

  • Kim, Kwang-Baek;Cho, Jae-Hyun;Woo, Young-Woon
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.213-217
    • /
    • 2008
  • This paper proposes a novel method for the recognition of passports based on the CDM(Conditional Dilation Morphology) masking and the ART2-based RBF neural networks. For the extraction of individual codes for recognizing, this paper targets code sequence blocks including individual codes by applying Sobel masking, horizontal smearing and a contour tracking algorithm on the passport image. Individual codes are recovered and extracted from the binarized areas by applying CDM masking and vertical smearing. This paper also proposes an ART2-based hybrid network that adapts the ART2 network for the middle layer. This network is applied to the recognition of individual codes. The experiment results showed that the proposed method has superior in performance in the recognition of passport.

신경망 기반 과일 표면 검사에 관한 연구 (A Study on Neural Network-Based Inspection of Fruit Surface)

  • 이형구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.547-550
    • /
    • 2003
  • 본 논문은 카메라로 획득한 배의 표면과 꼭지 영상을 입력으로 하여 RBF 신경망 기반 분류기를 사용하여 양호한 배인지 아닌지를 판별하는 판별기의 설계에 대해 설명한다. 먼저 입력 영상에서 배경을 분리시킨 후 배만을 포함하는 영상을 얻고 이 영상에서 윤곽선과 같은 여러 가지 특징들을 추출한 후 미리 대량의 표면 영상과 꼭지 영상으로 훈련시킨 두 개의 RBF 신경망 기반 분류기를 사용하여 배의 상태를 판별한다. 구현되는 세부 모듈을 과일 종류에 맞게 수정한다면 제안되는 방법을 사과, 참외와 같은 다른 과일에도 적용할 수 있을 것이다.

  • PDF

On the Radial Basis Function Networks with the Basis Function of q-Normal Distribution

  • Eccyuya, Kotaro;Tanaka, Masaru
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.26-29
    • /
    • 2002
  • Radial Basis Function (RBF) networks is known as efficient method in classification problems and function approximation. The basis function of RBF networks is usual adopted normal distribution like the Gaussian function. The output of the Gaussian function has the maximum at the center and decrease as increase the distance from the center. For learning of neural network, the method treating the limited area of input space is sometimes more useful than the method treating the whole of input space. The q-normal distribution is the set of probability density function include the Gaussian function. In this paper, we introduce the RBF networks with the basis function of q-normal distribution and actually approximate a function using the RBF networks.

  • PDF

개선된 RBF 신경망을 이용한 여권 인식 (The Passport Recognition by Using Enhanced RBF Neural Network)

  • 류재욱;김태경;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.529-534
    • /
    • 2002
  • 출입 관리는 위조 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하고 출입국자를 관리하기 위하여 행하여진다. 한편, 여권에는 사진, 국적, 성명, 주민등록번호, 성별, 여권번호 등을 포함한 정보들로 이루어져 있다. 이러한 출입국 관리 시스템은 출입국 심사 시간이 길어 출입국자에게 불편이 따르고 또한 출입국 부적격자에 대한 정확한 검색이 불분명하여 체계적으로 관리하기가 어렵다. 이러한 종래의 문제점을 개선하기 위해 영상 처리와 문자 인식을 이용한 여권 인증 시스템을 제안한다. 본 논문에서는 여권 영상에 대해 소벨 연산자와 스미어링 기법 그리고 윤곽선 추적 알고리즘을 이용하여 사진영역, 코드 영역 및 개별 코드 문자를 추출하였다. 추출된 개별 코드 인식은 ART2 알고리즘을 기반으로 한 RBF 신경망을 제안하여 여권 인식에 적용하였다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상들을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

  • PDF

RBF 신경망을 이용한 모델개선법 (Model Updating Using Radial Basis Function Neural Network)

  • 김광근;최성필;김영찬;양보석
    • 한국유체기계학회 논문집
    • /
    • 제3권3호
    • /
    • pp.19-24
    • /
    • 2000
  • It is well known that the finite element analysis often has an inaccuracy when it is in conflict with test results. Model updating is concerned with the correction of analytical model by processing records of response from test results. The famous one of the model updating methods is FRF sensitivity method. However, it has demerit that the solution is not unique. So, the neural network is recommended when an unique and exact solution is desired. The generalization ability of radial basis function neural network is used in model updating. As an application model, a cantilever and a rotor system are used. Specially the machined clearance($C_p$) of a journal bearing is updated.

  • PDF