• Title/Summary/Keyword: RBF 신경회로망

Search Result 42, Processing Time 0.032 seconds

Design of Evolutionary Computing-based RBF Neural Networks (진화 컴퓨팅 기반 RBF 신경회로망의 설계)

  • 정병조;노석범;장성환;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.265-268
    • /
    • 2004
  • 본 논문은 최적화 방법인 유전자 알고리즘을 이용하여 진화 컴퓨팅 기반 RBF 신경회로망을 이용한 새로운 비선형 시스템 설계 방법을 제안한다. 비선형 시스템 설계시 문제점으로는 복잡성과 불확실성을 들수 있으며, 이러한 문제를 해결하기 위해서 지능형 모델을 사용하게 되었다. 본 논문에서는 일반적인 신경회로망보다 성능이 뛰어난 RBF 신경회로망을 사용하여 비선형 시스템을 모델링 한다. HCM 클러스터링을 이용하여 유사한 특성을 가진 비선형 데이터를 분류하여 입력으로 사용한다. 제안한 진화 컴퓨팅 기반 RBF 신경회로망을 이용한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 학습 데이터와 테스트 데이터를 이용하여 그 우수성을 보인다.

  • PDF

Pattern Classification of Two Classes' Problem Using Polynomial based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 2-클래스 문제에 대한 패턴분류)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.451-452
    • /
    • 2007
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis Function Neural Networks)을 설계하고 이를 2-클래스 패턴 분류 문제에 응용하여 그 성능을 분석한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력 층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉 층으로 전달하는 기능을 수행하고 은닉층은 Fuzzy c-means 클러스터링을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 제안된 다항식기반 RBF 신경회로망은 각기 다른 4종류의 2-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석한다.

  • PDF

The Study of Neural Networks Using Orthogonal Function System (직교함수를 사용한 신경회로망에 대한 연구)

  • 권성훈;최용준;이정훈;손동설;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.214-217
    • /
    • 1999
  • In this paper we proposed a heterogeneous hidden layer consisting of both sigmoid functions and RBFs(Radial Basis Function) in multi-layered neural networks. Focusing on the orthogonal relationship between the sigmoid function and its derivative, a derived RBF that is a derivative of the sigmoid function is used as the RBF in the neural network. so the proposed neural network is called ONN's feasibility Neural Network). Identification results using a nonlinear. function confirm both the ONN's feasibility and characteristics by comparing with those obtained using a conventional neural network which has sigmoid function or RBF in hidden layer.

  • PDF

A Study on Pattern Recognition Using Polynomial-based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 패턴인식에 대한 연구)

  • Ji, Kwang-Hee;Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.387-389
    • /
    • 2009
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경 회로망을 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. 제안된 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층의 연결가중치는 1로서 입력층의 입력벡터는 그대로 은닉층으로 전달되고 은닉층은 FCM(Fuzzy C-means Clustering)방법을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습되어진다. 네트워크의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의한 퍼지추론의 결과로 얻어진다. 제안된 RBF 신경회로망은 여러 종류의 machine learning 데이터에 적용하여 패턴분류기로서의 성능을 평가받는다.

  • PDF

Voice Activity Detection Algorithm base on Radial Basis Function Networks with Dual Threshold (Radial Basis Function Networks를 이용한 이중 임계값 방식의 음성구간 검출기)

  • Kim Hong lk;Park Sung Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1660-1668
    • /
    • 2004
  • This paper proposes a Voice Activity Detection (VAD) algorithm based on Radial Basis Function (RBF) network using dual threshold. The k-means clustering and Least Mean Square (LMS) algorithm are used to upade the RBF network to the underlying speech condition. The inputs for RBF are the three parameters in a Code Exited Linear Prediction (CELP) coder, which works stably under various background noise levels. Dual hangover threshold applies in BRF-VAD for reducing error, because threshold value has trade off effect in VAD decision. The experimental result show that the proposed VAD algorithm achieves better performance than G.729 Annex B at any noise level.

Recognition of Disease in Medical Image (의료영상의 질환인식)

  • 신승수;이상복;조용환
    • The Journal of the Korea Contents Association
    • /
    • v.1 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • In this paper, we suggests a algorithms of recognizing the disease region by extracting particular organ from medical image. This method can extract liver region in spite of input image including many organs and charged format by using multi-threshold of feed-back-structure for segmentation liver region, and suggest the recognition of disease region in extracted liver, using multi-neural network structured by RBF and BP, overcoming the defect of single-neural network. The algorithm in this paper is proficient in adaptation for a multi form change of input medical image. This algorithm can be used at tole-medicine through automatic recognition after recognizing of the disease region by real-tire medical Image.

  • PDF

The Study of Orthogonal Neural Network (직교함수 신경회로망에 대한 연구)

  • 권성훈;이현관;엄기환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.145-154
    • /
    • 2000
  • In this paper we proposed the orthogonal neural network(ONN) to control and identify the unknown controlled system. The proposed ONN used the buffer layer in front of the hidden layer and the hidden layer used the sigmoid function and its derivative a derived RBF that is a derivative of the sigmoid function. In order to verify the property of the proposed, it is examined by simulation results of the Narendra model. Controlled system is composed of ONN and confirmed its usefulness through simulation and experimental results.

  • PDF

Robust Speed Control of AC Permanent Magnet Synchronous Motor using RBF Neural Network (RBF 신경회로망을 이용한 교류 동기 모터의 강인 속도 제어)

  • 김은태;이성열
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.243-250
    • /
    • 2003
  • In this paper, the speed controller of permanent-magnet synchronous motor (PMSM) using the RBF neural (NN) disturbance observer is proposed. The suggested controller is designed using the input-output feedback linearization technique for the nominal model of PMSM and incorporates the RBF NN disturbance observer to compensate for the system uncertainties. Because the RBF NN disturbance observer which estimates the variation of a system parameter and a load torque is employed, the proposed algorithm is robust against the uncertainties of the system. Finally, the computer simulation is carried out to verify the effectiveness of the proposed method.

The Adaptive Backstepping Controller of RBF Neural Network Which is Designed on the Basis of the Error (오차를 기반으로한 RBF 신경회로망 적응 백스테핑 제어기 설계)

  • Kim, Hyun Woo;Yoon, Yook Hyun;Jeong, Jin Han;Park, Jahng Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • 2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.

Neural Network Control of a Two Wheeled Mobile Inverted Pendulum System with Two Arms (두 팔 달린 두 바퀴 형태의 모바일 역진자 시스템의 신경회로망 제어)

  • Noh, Jin-Seok;Kim, Hyun-Wook;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.652-658
    • /
    • 2010
  • This paper presents the implementation and control of a two wheeled mobile robot(TWMR) based on a balancing mechanism. The TWMR is a mobile inverted pendulum structure that combines an inverted pendulum system and a mobile robot system with two arms instead of a rod. To improve robustness due to disturbances, the radial basis function (RBF) network is used to control an angle and a position at the same time. The reference compensation technique(RCT) is used as a neural control method. Experimental studies are conducted to demonstrate performance of neural network controllers. The robot are implemented with the remote control capability.