• Title/Summary/Keyword: RASTA-PLP

Search Result 10, Processing Time 0.022 seconds

Phoneme-Model Word Recognizer on RASTA-PLP (RASTA-PLP의 음소 모델 단어 인식기 적용)

  • 허창원
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.9-12
    • /
    • 1997
  • 대부분의 음성 파?너 추정 기법은 통신 채널의 주파수 응답에 의해 쉽게 영향을 받는다. 이 논문에서 우리는 음성에서 그러한 안정상태의 스펙트럼 계수에 있어서 좀더 강인한 기법인 RASTA-PLP 방법을 적용하여 파라미터를 추출하고 그 파라미터를 연속 HMM 인식기의 입력으로 사용하여 문맥독립 음소 모델을 훈련하는 과정에서 최적의 모델을 찾게 된다. 여기서는 ETRI 445 DB에 RASTA-PLP를 적용하였을 때 가장 좋은 성능을 나타내는 재추정 횟수와 mixutre 수를 찾는 데 목표를둔다. 문맥독립음소모델은 한국어의 발성학적 근거를 토대로 하고 여기에 묵음(silence)을 추가하여 총 40개로 정의하였다. 문맥독립 음소모델은 3개의 상태를 가지는 전형적인 left-to right CHMM(Continuous Hidden Markov Model)을 이용하여 훈련한다. 그리고 훈련시간을 줄이기 위해 Viterbi beam 탐색법을 적용한다.

  • PDF

Representation of MFCC Feature Based on Linlog Function for Robust Speech Recognition (강인한 음성 인식을 위한 선형 로그 함수 기반의 MFCC 특징 표현 연구)

  • Yun, Young-Sun
    • MALSORI
    • /
    • no.59
    • /
    • pp.13-25
    • /
    • 2006
  • In previous study, the linlog(linear log) RASTA(J-RASTA) approach based on PLP was proposed to deal with both the channel effect and the additive noise. The extraction of PLP required generally more steps and computation than the extraction of widely used MFCC. Thus, in this paper, we apply the linlog function to the MFCC for investigating the possibility of simple compensation method that removes both distortion. With the experimental results, the proposed method shows the similar tendency to the linlog RASTA-PLP_ When the J value is set to le-6, the best ERR(Error Reduction Rate) of 33% is obtained. For applying the linlog function to the feature extraction process, the J value plays a very important role in compensating the corruption. Thus, the study for the adaptive J or noise dependent J estimation is further required.

  • PDF

A Method of Evaluating Korean Articulation Quality for Rehabilitation of Articulation Disorder in Children

  • Lee, Keonsoo;Nam, Yunyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3257-3269
    • /
    • 2020
  • Articulation disorders are characterized by an inability to achieve clear pronunciation due to misuse of the articulators. In this paper, a method of detecting such disorders by comparing to the standard pronunciations is proposed. This method defines the standard pronunciations from the speeches of normal children by clustering them with three features which are the Linear Predictive Cepstral Coefficient (LPCC), the Mel-Frequency Cepstral Coefficient (MFCC), and the Relative Spectral Analysis Perceptual Linear Prediction (RASTA-PLP). By calculating the distance between the centroid of the standard pronunciation and the inputted pronunciation, disordered speech whose features locates outside the cluster is detected. 89 children (58 of normal children and 31 of children with disorders) were recruited. 35 U-TAP test words were selected and each word's standard pronunciation is made from normal children and compared to each pronunciation of children with disorders. In the experiments, the pronunciations with disorders were successfully distinguished from the standard pronunciations.

Robust Speech Recognition Parameters for Emotional Variation (감정 변화에 강인한 음성 인식 파라메터)

  • Kim Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.655-660
    • /
    • 2005
  • This paper studied the feature parameters less affected by the emotional variation for the development of the robust speech recognition technologies. For this purpose, the effect of emotional variation on the speech recognition system and robust feature parameters of speech recognition system were studied using speech database containing various emotions. In this study, LPC cepstral coefficient, met-cepstral coefficient, root-cepstral coefficient, PLP coefficient, RASTA met-cepstral coefficient were used as a feature parameters. And CMS and SBR method were used as a signal bias removal techniques. Experimental results showed that the HMM based speaker independent word recognizer using RASTA met-cepstral coefficient :md its derivatives and CMS as a signal bias removal showed the best performance of $7.05\%$ word error rate. This corresponds to about a $52\%$ word error reduction as compare to the performance of baseline system using met - cepstral coefficient.

Robust Speech Parameters for the Emotional Speech Recognition (감정 음성 인식을 위한 강인한 음성 파라메터)

  • Lee, Guehyun;Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.681-686
    • /
    • 2012
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust emotional speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient, root-cepstral coefficient, PLP coefficient and frequency warped mel-cepstral coefficient in the vocal tract length normalization method were used as feature parameters. And CMS (Cepstral Mean Subtraction) and SBR(Signal Bias Removal) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using frequency warped RASTA mel-cepstral coefficient in the vocal tract length normalized method, its derivatives and CMS as a signal bias removal showed the best performance.

Robust Speech Recognition for Emotional Variation (감정 변화에 강인한 음성 인식)

  • Kim, Won-Gu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.431-434
    • /
    • 2007
  • 본 논문에서는 인간의 감정 변화의 영향을 적게 받는 음성 인식 시스템의 특정 파라메터에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향과 감정 변화의 영향을 적게 받는 특정 파라메터에 관한 연구를 수행하였다. 본 연구에서는 LPC 켑스트럼 계수, 멜 켑스트럼 계수, 루트 켑스트럼 계수, PLP 계수와 RASTA 처리를 한 멜 켑스트럼 계수와 음성의 에너지를 사용하였다. 또한 음성에 포함된 편의(bias)를 제거하는 방법으로 CMS 와 SBR 방법을 사용하여 그 성능을 비교하였다. HMM 기반의 화자독립 단어 인식기를 사용한 실험 결과에서 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 경우에 가장 우수한 성능을 나타내었다. 이러한 것은 멜 켑스트럼을 사용한 기준 시스템과 비교하여 59%정도 오차가 감소된 것이다.

  • PDF

Speech Feature Selection of Normal and Autistic children using Filter and Wrapper Approach

  • Akhtar, Muhammed Ali;Ali, Syed Abbas;Siddiqui, Maria Andleeb
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.129-132
    • /
    • 2021
  • Two feature selection approaches are analyzed in this study. First Approach used in this paper is Filter Approach which comprises of correlation technique. It provides two reduced feature sets using positive and negative correlation. Secondly Approach used in this paper is the wrapper approach which comprises of Sequential Forward Selection technique. The reduced feature set obtained by positive correlation results comprises of Rate of Acceleration, Intensity and Formant. The reduced feature set obtained by positive correlation results comprises of Rasta PLP, Log energy, Log power and Zero Crossing Rate. Pitch, Rate of Acceleration, Log Power, MFCC, LPCC is the reduced feature set yield as a result of Sequential Forwarding Selection.

Front-End Processing for Speech Recognition in the Telephone Network (전화망에서의 음성인식을 위한 전처리 연구)

  • Jun, Won-Suk;Shin, Won-Ho;Yang, Tae-Young;Kim, Weon-Goo;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.57-63
    • /
    • 1997
  • In this paper, we study the efficient feature vector extraction method and front-end processing to improve the performance of the speech recognition system using KT(Korea Telecommunication) database collected through various telephone channels. First of all, we compare the recognition performances of the feature vectors known to be robust to noise and environmental variation and verify the performance enhancement of the recognition system using weighted cepstral distance measure methods. The experiment result shows that the recognition rate is increasedby using both PLP(Perceptual Linear Prediction) and MFCC(Mel Frequency Cepstral Coefficient) in comparison with LPC cepstrum used in KT recognition system. In cepstral distance measure, the weighted cepstral distance measure functions such as RPS(Root Power Sums) and BPL(Band-Pass Lifter) help the recognition enhancement. The application of the spectral subtraction method decrease the recognition rate because of the effect of distortion. However, RASTA(RelAtive SpecTrAl) processing, CMS(Cepstral Mean Subtraction) and SBR(Signal Bias Removal) enhance the recognition performance. Especially, the CMS method is simple but shows high recognition enhancement. Finally, the performances of the modified methods for the real-time implementation of CMS are compared and the improved method is suggested to prevent the performance degradation.

  • PDF

The Effect of the Telephone Channel to the Performance of the Speaker Verification System (전화선 채널이 화자확인 시스템의 성능에 미치는 영향)

  • 조태현;김유진;이재영;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.12-20
    • /
    • 1999
  • In this paper, we compared speaker verification performance of the speech data collected in clean environment and in channel environment. For the improvement of the performance of speaker verification gathered in channel, we have studied on the efficient feature parameters in channel environment and on the preprocessing. Speech DB for experiment is consisted of Korean doublet of numbers, considering the text-prompted system. Speech features including LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair) are analyzed. Also, the preprocessing of filtering to remove channel noise is studied. To remove or compensate for the channel effect from the extracted features, cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl) are applied. Also by presenting the speech recognition performance on each features and the processing, we compared speech recognition performance and speaker verification performance. For the evaluation of the applied speech features and processing methods, HTK(HMM Tool Kit) 2.0 is used. Giving different threshold according to male or female speaker, we compare EER(Equal Error Rate) on the clean speech data and channel data. Our simulation results show that, removing low band and high band channel noise by applying band pass filter(150~3800Hz) in preprocessing procedure, and extracting MFCC from the filtered speech, the best speaker verification performance was achieved from the view point of EER measurement.

  • PDF

Speech Recognition Using Noise Robust Features and Spectral Subtraction (잡음에 강한 특징 벡터 및 스펙트럼 차감법을 이용한 음성 인식)

  • Shin, Won-Ho;Yang, Tae-Young;Kim, Weon-Goo;Youn, Dae-Hee;Seo, Young-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.38-43
    • /
    • 1996
  • This paper compares the recognition performances of feature vectors known to be robust to the environmental noise. And, the speech subtraction technique is combined with the noise robust feature to get more performance enhancement. The experiments using SMC(Short time Modified Coherence) analysis, root cepstral analysis, LDA(Linear Discriminant Analysis), PLP(Perceptual Linear Prediction), RASTA(RelAtive SpecTrAl) processing are carried out. An isolated word recognition system is composed using semi-continuous HMM. Noisy environment experiments usign two types of noises:exhibition hall, computer room are carried out at 0, 10, 20dB SNRs. The experimental result shows that SMC and root based mel cepstrum(root_mel cepstrum) show 9.86% and 12.68% recognition enhancement at 10dB in compare to the LPCC(Linear Prediction Cepstral Coefficient). And when combined with spectral subtraction, mel cepstrum and root_mel cepstrum show 16.7% and 8.4% enhanced recognition rate of 94.91% and 94.28% at 10dB.

  • PDF