• Title/Summary/Keyword: RAON

Search Result 44, Processing Time 0.021 seconds

Radiological Assessment of Environmental Impact of the IF-System Facility of the RAON

  • Lee, Cheol-Woo;Whang, Won Tae;Kim, Eun Han;Han, Moon Hee;Jeong, Hae Sun;Jeong, Sol;Lee, Sang-jin
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.58-65
    • /
    • 2021
  • Background: The evaluation of skyshine distribution, release of airborne radioactive nuclides, and soil activation and groundwater migration were required for radiological assessment of the impact on the environment surrounding In-Flight (IF)-system facility of the RAON (Rare isotope Accelerator complex for ON-line experiment) accelerator complex. Materials and Methods: Monte Carlo simulation by MCNPX code was used for evaluation of skyshine and activation analysis for air and soil. The concentration model was applied in the estimation of the groundwater migration of radionuclides in soil. Results and Discussion: The skyshine dose rates at 1 km from the facility were evaluated as 1.62 × 10-3 μSv·hr-1. The annual releases of 3H and 14C were calculated as 9.62 × 10-5 mg and 1.19 × 10-1 mg, respectively. The concentrations of 3H and 22Na in drinking water were estimated as 1.22 × 10-1 Bq·cm-3 and 8.25 × 10-3 Bq·cm-3, respectively. Conclusion: Radiological assessment of environmental impact on the IF-facility of RAON was performed through evaluation of skyshine dose distribution, evaluation of annual emission of long-lived radionuclides in the air and estimation of soil activation and groundwater migration of radionuclides. As a result, much lower exposure than the limit value for the public, 1 mSv·yr-1, is expected during operation of the IF-facility.

Temperature Measurement Techniques for RAON Cryomodule

  • Kim, Heetae;Jung, Yoochul;Jo, Yong Woo;Lee, Min Ki;Choi, Jong Wan;Kim, Youngkwon;Kim, Juwan;Paeng, Won-Gi;Kim, Moo Sang;Jung, Hoechun;Kwon, Young Kwan
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.30-34
    • /
    • 2018
  • Conducting and semiconducting temperature sensors are calibrated and applied to cryomodules. The definition of temperature is introduced and the pressure in vacuum is shown as a function of temperature. The resistance of Drude model is shown as a function of carrier density and mean free path. Temperature sensors are calibrated with Physical Property Measurement System (PPMS). The temperature sensors are applied to measure temperature accurately in RAON cryomodules.

Attenuation curves of neutrons from 400 to 550 Mev/u for Ca, Kr, Sn, and U ions in concrete on a graphite target for the design of shielding for the RAON in-flight fragment facility in Korea

  • Lee, Eunjoong;Kim, Junhyeok;Kim, Giyoon;Kim, Jinhwan;Park, Kyeongjin;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.275-283
    • /
    • 2019
  • Rare isotope beam facilities require shielding data in early stage of their design. There is much less shielding data on neutrons from the reactions between heavy ion beams and matter than the data on neutrons produced by protons. The purpose of the present work is to produce and thus increase the amount of shielding data on neutrons generated by high-energy heavy ion beams based on the RAON in-flight fragment facility. Calculations were performed with the computational Monte Carlo codes PHITS and MCNPX. The secondary neutron source terms were evaluated at 550 MeV/u for Ca, Kr, and Sn and at 400 MeV/u for U ions on a graphite target. Source terms and attenuation lengths were obtained by fitting the ambient dose equivalent inside an ordinary concrete shield.

Monte Carlo Simulation of the Carbon Beam Nozzle for the Biomedical Research Facility in RAON (한국형 중이온 가속기 RAON의 의생물 연구시설 탄소 빔 노즐에 대한 Monte Carlo 시뮬레이션)

  • Bae, Jae-Beom;Cho, Byung-Cheol;Kwak, Jung-Won;Park, Woo-Yoon;Lim, Young-Kyung;Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of the Monte Carlo simulation study was to provide the optimized nozzle design to satisfy the beam conditions for biomedical researches in the Korean heavy-ion accelerator, RAON. The nozzle design was required to produce $C^{12}$ beam satisfying the three conditions; the maximum field size, the dose uniformity and the beam contamination. We employed the GEANT4 toolkit in Monte Carlo simulation to optimize the nozzle design. The beams for biomedical researches were required that the maximum field size should be more than $15{\times}15cm^2$, the dose uniformity was to be less than 3% and the level of beam contamination due to the scattered radiation from collimation systems was less than 5% of total dose. For the field size, we optimized the tilting angle of the circularly rotating beam controlled by a pair of dipole magnets at the most upstream of the user beam line unit and the thickness of the scatter plate located downstream of the dipole magnets. The values of beam scanning angle and the thickness of the scatter plate could be successfully optimized to be $0.5^{\circ}$ and 0.05 cm via this Monte Carlo simulation analysis. For the dose uniformity and the beam contamination, we introduced the new beam configuration technique by the combination of scanning and static beams. With the combination of a central static beam and a circularly rotating beam with the tilting angle of $0.5^{\circ}$ to beam axis, the dose uniformity could be established to be 1.1% in $15{\times}15cm^2$ sized maximum field. For the beam contamination, it was determined by the ratio of the absorbed doses delivered by $C^{12}$ ion and other particles. The level of the beam contamination could be achieved to be less than 2.5% of total dose in the region from 5 cm to 17 cm water equivalent depth in the combined beam configuration. Based on the results, we could establish the optimized nozzle design satisfying the beam conditions which were required for biomedical researches.

Rapid Analysis of Nitrate Concentration in Different Growth Stages and Plant Parts of Paprika Leaf Using On-site Rapid Detection Kit (신속분석기기를 이용한 파프리카 생육단계 및 부위별 엽내 질산태질소 농도 신속분석)

  • Lee, Min Ji;Rhee, Han Cheol;Choi, Gyeong Lee;Oh, Sang Seok;Lee, Jae Taek;Lee, Jun Gu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.333-339
    • /
    • 2017
  • This research was aimed to establish rapid analysis technique for the determination of nitrate ($NO_3{^-}$) concentration in the leaves of paprika, which has key role for the stable vegetative and reproductive growth. Leaf petiole and blade sap of two paprika cultivars ('Raon red' and 'Raon yellow') were used for the determination of $NO_3{^-}$ concentration, separately using rapid detection kit (RQ-flex) and spectroscopy quantification methods. In addition, two paprika cultivars namely, 'Nicole' and 'TP2001' were used to determine the status of $NO_3{^-}$ concentration in leaf of each fruiting group. $NO_3{^-}$ concentration in leaf blade sap and the content in leaf showed significant correlation ($R^2=0.8628$), analysed by RQ-flex and spectroscopy methods, respectively. Furthermore, leaf petiole sap and the content in leaf also showed significant correlation ($R^2=0.6734$) but the relationship was poor compared to leaf blade sap and the leaf content. $NO_3{^-}$ concentration in petiole sap decreased in all the cultivars from early to late fruiting group. The higher concentration in the lower leaves and the continuous decrease towards the upper leaves in the both years were found through the analysis of $NO_3{^-}$ concentration in different leaf position. In addition, daily short-term fluctuation of $NO_3{^-}$ in petiole sap could be rapidly monitored. These results showed that long-term or short-term monitoring by test strip-based rapid analysis technique might be useful tool for the diagnosis of nutritional status for the stable of nutritional management in paprika.

Effects of Removable Ankle-Foot Orthosis in Chronic Patients With Hemiplegia During Gait Training: A Pilot Study

  • Kim, Hyung-geun;Oh, Yong-seop
    • Physical Therapy Korea
    • /
    • v.22 no.3
    • /
    • pp.91-97
    • /
    • 2015
  • This study was conducted to investigate the effects of the removable ankle-foot orthosis (RAFO) which was developed to improve the gait of stroke patients. The subjects of this study were five stroke patients who agreed to participate in this study by signing a written consent form. To verify gait improvement after wearing the orthosis, a Timed Up and Go test and Functional Gait Assessment were performed, and spatiotemporal gait variables such as gait speed, cadence, stride length, double limb support, and the efficient gait test of body sway angle were performed. For every variable, the differences prior to and after wearing the RAFO were compared using the Wilcoxon signed-rank test. Every gait variable improved significantly after wearing the RAFO compared to prior to wearing it. The pilot study will enhance future efforts to evaluate orthotic function objectively during gait in stroke patients.

Physicochemical qualities, antioxidant compounds, and activities of six mini paprika cultivars

  • Baek, Seolji;Shin, Youngjae
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.377-384
    • /
    • 2020
  • Paprika is a popular vegetable with high visual appeal and desirable flavor, the health benefits of which are increasingly attracting interest. In this study, the physical qualities, antioxidant content, and activities of six mini paprika cultivars were investigated. Both the edible part (flesh) and the by-products were studied. The average total phenolics and total antioxidant activities were higher in the flesh than in the by-products. The total flavonoids of the flesh and the byproducts were 16.41 and 37.80 mg/100 g FW, respectively. "YW glory" and "Raon yellow" flesh had the highest (245.52 mg/100 g FW) and lowest (179.96 mg/100 g FW) total phenolics among the six cultivars, respectively. However, the "RD glory" cultivar showed the highest total phenolic content (232.70 mg/100 g FW) among the by-product samples. The total phenolics in the flesh and by-products were highly correlated to the ABTS radical scavenging activity, with R=0.961 and 0.984, respectively.

Cool-down test of HWR cryomodule for RAON

  • Kim, Y.;Lee, M.;Jo, Y.W.;Choi, J.W.;Kim, H.;Kim, W.K.;Kim, H.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.43-46
    • /
    • 2015
  • The heavy ion accelerator that will be built in Daejeon utilizes four types of superconducting cavities. Cryomodules holding the superconducting cavities in them supply thermal insulation for cavities operating in 4.3 K or 2.1 K. A Prototype of cryomodule which holds two HWR (Half Wave Resonator) cavities was fabricated and tested. Since the operating temperature of the HWR is 2.1 K, the superfluid helium was generated with warm vacuum pumping system. The cyromodule was successfully cooled down below lambda point temperature of helium and any detectable leak was not observed during the test. The static thermal load at 4.2 K was measured. The result and the experience for the cool-down below lambda point of helium are reported in this paper.

Conceptual design of cryomodules for RAON

  • Kim, Y.;Lee, M.K.;Kim, W.K.;Jang, H.M.;Choi, C.J.;Jo, Y.W.;Kim, H.J.;Jeon, D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.15-20
    • /
    • 2014
  • The heavy ion accelerator that will be built in Daejeon, Korea utilizes superconducting cavities operating in 2 K. The cavities are QWR (quarter wave resonator), HWR (half wave resonator), SSR1 (sing spoke resonator1) and SSR2. The main role of the cryomodule is supplying thermal insulation for cryogenic operation of the cavities and maintaining cavities' alignment. Thermal and structural consideration such as thermal load by heat leak and heat generation, cryogenic fluid management, thermal contraction, and so on. This paper describes detailed design considerations and current results have being done including thermal load estimation, cryogenic flow piping, pressure relief system, and so on.

Development of high-speed (300MHz) test system for system IC (시스템 IC를 위한 하이스피드(300MHz) 테스트 시스템 개발)

  • Jung, Dong-soo;kong, Kyung-bae;Lee, Jong-Hyeok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.507-511
    • /
    • 2018
  • This paper proposes a method for system development for high speed (300MHz) test of system IC semiconductors. The high-speed test system proposes a high-speed test circuit interface and a PCB design method for noise reduction. This paper proposes evaluation items and procedures for verifying the performance of the developed system. System IC The development of high speed test systems will help optimize the development of domestic system IC test equipment.

  • PDF