• Title/Summary/Keyword: RANs

Search Result 539, Processing Time 0.028 seconds

Calculation of Turbulent Flows around a Submarine for the Prediction of Hydrodynamic Performance

  • Kim, Jin;Park, Il-Ryong;Van, Suak-Ho;Kim, Wu-Joan
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.16-31
    • /
    • 2003
  • The finite volume based multi-block RANS code, WAVIS developed at KRISO, is used to simulate the turbulent flows around a submarine with the realizable $\textsc{k}-\varepsilon$ turbulence model. RANS methods are verified and validated at the level of validation uncertainty 1.54% of the stagnation pressure coefficient for the solution of the turbulent flows around SUBOFF submarine model without appendages. Another SUBOFF configuration, axisymmetric body with four identical stem appendages, is also computed and validated with the experimental data of the nominal wake and hydrodynamic coefficients. The hydrodynamic forces and moments for SUBOFF model and a practical submarine are predicted at several drift and pitch angles. The computed results are in extremely good agreement with experimental data. Furthermore, it is noteworthy that all the computations at the present study were carried out in a PC and the CPU time required for 2.8 million grids was about 20 hours to get fully converged solution. The current study shows that CFD can be a very useful and cost effective tool for the prediction of the hydrodynamic performance of a submarine in the basic design stage.

Investigation on the wake evolution of contra-rotating propeller using RANS computation and SPIV measurement

  • Paik, Kwang-Jun;Hwang, Seunghyun;Jung, Jaekwon;Lee, Taegu;Lee, Yeong-Yeon;Ahn, Haeseong;Van, Suak-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.595-609
    • /
    • 2015
  • The wake characteristics of Contra-Rotating Propeller (CRP) were investigated using numerical simulation and flow measurement. The numerical simulation was carried out with a commercial CFD code based on a Reynolds Averaged Navier-Stokes (RANS) equations solver, and the flow measurement was performed with Stereoscopic Particle Image Velocimetry (SPIV) system. The simulation results were validated through the comparison with the experiment results measured around the leading edge of rudder to investigate the effect of propeller operation under the conditions without propeller, with forward propeller alone, and with both forward and aft propellers. The evolution of CRP wake was analyzed through velocity and vorticity contours on three transverse planes and one longitudinal plane based on CFD results. The trajectories of propeller tip vortex core in the cases with and without aft propeller were also compared, and larger wake contraction with CRP was confirmed.

Influence of geometric configuration on aerodynamics of streamlined bridge deck by unsteady RANS

  • Haque, Md. N.;Katsuchi, Hiroshi;Yamada, Hitoshi;Kim, Haeyoung
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.331-345
    • /
    • 2019
  • Long-span bridge decks are often shaped as streamlined to improve the aerodynamic performance of the deck. There are a number of important shaping parameters for a streamlined bridge deck. Their effects on aerodynamics should be well understood for shaping the bridge deck efficiently and for facilitating the bridge deck design procedure. This study examined the effect of various shaping parameters such as the bottom plate slope, width ratio and side ratio on aerodynamic responses of single box streamlined bridge decks by employing unsteady RANS simulation. Steady state responses and flow field were analyzed in detail for wide range of bottom plate slopes, width and side ratios. Then for a particular deck shape Reynolds number effect was investigated by varying its value from $1.65{\times}10^4$ to $25{\times}10^4$. The aerodynamic response showed very high sensitivity to the considered shaping parameters and exhibited high aerodynamic performance for a particular combination of shaping parameters.

Numerical Simulation of Separation using RANS model in Curved Channel (RANS를 이용한 곡선 수로에서 박리 현상 모의)

  • Lee, Seonmin;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.63-63
    • /
    • 2016
  • 자연 하천은 연속적인 곡선 흐름을 가지고 있으며, 하천의 흐름을 해석하는 것은 복잡하고 어려운 일이다. 게다가 자연하천에서는 유사이송에 의해 하상변동이 발생하며 이를 정확하게 예측하는 것은 공학적 문제 해결에 중요한 역할을 한다. 곡선 흐름에서의 하상변동양상은 원심력에 의한 이차류로 인하여 유사가 하천의 내측으로 이동하게 되고, 하천의 외측에는 침식, 내측에는 퇴적이 된다. 이와 같은 현상은 원심력뿐만이 아니라 하천의 곡선에 의해 발생하게 되는 박리 또한 중요한 원인으로 이야기 되고 있으며, 선행 연구자들에 의해서 박리의 영향이 작지 않음을 알 수 있다. 자연하천에서의 정확한 하상변동을 예측하기 위해서는 원심력에 의한 이차류와 박리의 현상을 정확히 모의할 수 있어야하며, 이를 위해 3차원 모형이 필요하다. 따라서 본 연구에서는 3차원 unsteady RANS 모형을 이용하여 곡선수로에서 박리가 발생하는 현상을 모의하고자 한다. 곡선수로를 모의하기 위해서 곡선좌표계를 사용하였으며, 난류모형으로는 standard $k-{\varepsilon}$$k-{\omega}$ SST을 사용하였다. 또한 fractional step method를 이용하여 유속과 압력 커플링을 하였다. 그 결과 곡선수로의 흐름모의에서 레이놀즈 수가 큰 경우 박리가 발생하는 것을 확인하였으며, 두 난류모형 모두 곡선 흐름에서의 박리 현상을 모의할 수 있었다.

  • PDF

Investigation of Turbulent Analysis Methods for CFD of Gas Dispersion Around a Building (건물주위의 가스 확산사고에 대한 CFD 난류 해석기법 검토)

  • Ko, Min Wook;Oh, Chang Bo;Han, Youn Shik;Do, Kyu Hyung
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.42-50
    • /
    • 2015
  • Three simulation approaches for turbulence were applied for the computation of propane dispersion in a simplified real-scale urban area with one building:, Large Eddy Simulation (LES), Detached Eddy Simulation (DES), and Unsteady Reynolds Averaged Navier-Stokes (RANS). The computations were performed using FLUENT 14, and the grid system was made with ICEM-CFD. The propane distribution depended on the prediction performance of the three simulation approaches for the eddy structure around the building. LES and DES showed relatively similar results for the eddy structure and propane distribution, while the RANS prediction of the propane distribution was unrealistic. RANS was found to be inappropriate for computation of the gas dispersion process due to poor prediction performance for the unsteady turbulence. Considering the computational results and cost, DES is believed to be the optimal choice for computation of the gas dispersion in a real-scale space.

COMPUTATION OF TRANSITION FLOW WITH LAMINAR SEPARATION BUBBLE OVER AN AIRFOIL (익형의 층류박리를 동반한 천이 유동 해석)

  • Jeon, S.E.;Park, S.H.;Kim, S.H.;Byun, Y.H.;Lee, J.W.;Jung, K.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.60-64
    • /
    • 2009
  • Laminar separation bubble and transitional flow over an airfoil are investigated at a moderate range of Reynolds numbers. In this research, a Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for NACA0012 airfoil. Results of transition onset point and length are compared well with experimental and XFOIL prediction. In high angle of attack the present RANS results show better agreement than XFOIL results using the boundary layer equations.

  • PDF

Influence of the Leading Edge Shape of a 2-Dimensional hydrofoil on Cavitation Characteristics (2차원 날개단면의 앞날 형상 변화에 따른 캐비테이션 특성 연구)

  • I.H. Song;J.W. Ahn;I.S. Moon;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.60-66
    • /
    • 2000
  • In order to improve cavitation characteristics for a high-speed propeller, leading edge shape of a 2-D hydrofoil is investigated numerically and experimentally. For flowfield analysis around the leading edge, the incompressible Reynolds Averaged Navier-Stokes(RANS) equation is solved using the standard $k-\varepsilon$ turbulence model and a finite volume method(FVM). The cavitation thickness, which is occurred on hydrofoil surface, is predicted using the panel code. It is shown that the calculation codes predict the experimental trend fairly well. From these results, new hydrofoils are designed

  • PDF

Numerical Flow Analysis of Ducted Marine Propeller with Pre-Swirl Guidevane (전치 가이드베인을 가지는 수중 덕트 프로펠러 주위의 전산 유동 해석)

  • Yu Hye-Ran;Jung Young-Rae;Park Warn-Gyu
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.62-69
    • /
    • 2004
  • The present work solved 3D incompressible RANS equations on a rotating, multi-blocked grid system to efficiently analyze ducted marine propulsor with the interaction of propeller guidevane and annular duct. To handle the interface boundary between the guidevane and the propeller, a sliding multiblock technique based on the cubic spline interpolation was applied. To validate the present code, a turbine flow was simulated and the time-averaged pressure coefficients were compared with experiment. After the code validation, the flowfield around a ducted marine propeller with pre-swirl guidevane was simulated.