• Title/Summary/Keyword: RANs

Search Result 539, Processing Time 0.028 seconds

Experimental and Numerical Studies of the Flowfield around an Axisymmetric Body (축대칭 물체 주위유동의 실험적·수치적 연구)

  • Ahn, Jong-Woo;Song, In-Haeng;Park, Tae-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.9-18
    • /
    • 1997
  • Experimental and numerical studies are carried out to investigate flow characteristics around an axisymmetric body with and without a compound propulsor. The effects of a compound propulsor are investigated as measuring the surface pressure distribution and the velocity profiles using LDV system in the cavitation tunnel of KRISO. The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are also solved using the finite volume method. The standard k-${\varepsilon}$ turbulence model is adopted for turbulence closure. In order to calculate propeller-hull interaction, the induced velocity calculated by lifting surface theory is considered as the boundary condition at the propeller plane. The experimental data obtained in this study can provide a useful database for development and validation of CFD code.

  • PDF

Hydraulic Characteristics in the Movable Venturi Flume with Circular Cone (원뿔형 벤츄리수로의 수리특성)

  • Kim, Dae Geun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2013
  • This study analyzed the hydraulic characteristics of a venturi flume with a circular cone using a 3-D numerical model which uses RANS(Reynolds-Averaged Navier-Stokes Equation) as the governing equation. The venturi flume with the circular cone efficiently measures the discharge in the low-flow to high-flow range and offers the advantage of accurate discharge measurements in the case of a low flow. With no influence of the tail-water depth, the stage-discharge relationship and the flow behaviors were analyzed to verify the numerical simulation results. Additionally, this study reviewed the effect of the tail-water depth on the flow. The stage-discharge relationship resulting from a numerical simulation in the absence of an effect by the tail-water depth showed a maximum margin of error of 4 % in comparison to the result of a hydraulic experiment. The simulation results reproduced the overall flow behaviors observed in the hydraulic experiment well. The flow starts to become influenced by the tail-water depth when the ratio of the tail-water depth to the total head exceeds approximately 0.7. As the ratio increases, the effect on the flow tends to grow dramatically. As shown in this study, a numerical simulation is effective for identifying the stage-discharge relationship of a venturi flume with various types of venturi bodies, including a venturi flume with a circular cone.

Numerical Studies of Supersonic Planar Mixing and Turbulent Combustion using a Detached Eddy Simulation (DES) Model

  • Vyasaprasath, Krithika;Oh, Sejong;Kim, Kui-Soon;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.560-570
    • /
    • 2015
  • We present a simulation of a hybrid Reynolds-averaged Navier Stokes / Large Eddy Simulation (RANS/LES) based on detached eddy simulation (DES) for a Burrows and Kurkov supersonic planar mixing experiment. The preliminary simulation results are checked in order to validate the numerical computing capability of the current code. Mesh refinement studies are performed to identify the minimum grid size required to accurately capture the flow physics. A detailed investigation of the turbulence/chemistry interaction is carried out for a nine species 19-step hydrogen-air reaction mechanism. In contrast to the instantaneous value, the simulated time-averaged result inside the reactive shear layer underpredicts the maximum rise in $H_2O$ concentration and total temperature relative to the experimental data. The reason for the discrepancy is described in detail. Combustion parameters such as OH mass fraction, flame index, scalar dissipation rate, and mixture fraction are analyzed in order to study the flame structure.

Unsteady Flow Analysis Around a HAWT System Using Sliding Mesh Technique (미끄럼 격자를 이용한 HAWT 시스템 주위의 비정상 유동장 해석)

  • Lee, Chi-Hoon;Kim, Sang-Gon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.201-209
    • /
    • 2011
  • An unsteady RANS analysis study of the 3-D flow around the NREL Phase VI horizontal axis wind turbine(HAWT) was performed using sliding mesh approach. Two different analysis models such as rotor-only and rotor with tower/nacelle were constructed to investigate the blade/tower interaction. Analysis results for the rotor with tower/nacelle were compared with the corresponding NREL's experimental data which produced fairly good validation of the present CFD model. Comparison of flows around those two models also clearly showed the blade/tower interaction even it was small for upwind configuration. Other visualization results and integrated aerodynamic loads including torque of the blade demonstrated the effective unsteady flow simulation capability of the present CFD model.

Design and Analysis of Wing-Tip and Wing-Body Fairings (날개 끝과 날개 동체 페어링의 설계 및 공력해석)

  • Park, Sang-Il;Kwak, Ein-Keun;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.289-296
    • /
    • 2011
  • In this study, fairing configurations for an aircraft are designed and the aerodynamic analyses of the fairings are performed to find the best choice for the aircraft. Fairings considered are wing-tip fairing and wing-body fairing. Wing alone analyses are done for the wing-tip faring selection, while wing-body-tail analyses are done for the wing-body fairing selection. A 3-D RANS solver with Menter's ${\kappa}-{\omega}$ SST turbulence model are used for the aerodynamic analyses. The effects on the drag of the aircraft are examined by comparing the analysis results with and without the farings.

Numerical wave interaction with tetrapods breakwater

  • Dentale, Fabio;Donnarumma, Giovanna;Carratelli, Eugenio Pugliese
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.800-812
    • /
    • 2014
  • The paper provides some results of a new procedure to analyze the hydrodynamic aspects of the interactions between maritime emerged breakwaters and waves by integrating CAD and CFD. The structure is modeled in the numerical domain by overlapping individual three-dimensional elements (Tetrapods), very much like the real world or physical laboratory testing. Flow of the fluid within the interstices among concrete blocks is evaluated by integrating the RANS equations. The aim is to investigate the reliability of this approach as a design tool. Therefore, for the results' validation, the numerical run-up and reflection effects on virtual breakwater were compared with some empirical formulae and some similar laboratory tests. Here are presented the results of a first simple validation procedure. The validation shows that, at present, this innovative approach can be used in the breakwater design phase for comparison between several design solutions with a significant minor cost.

Numerical investigation of yaw angle effects on propulsive characteristics of podded propulsors

  • Shamsi, Reza;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.287-301
    • /
    • 2013
  • The present paper deals with the problems of yaw angle effects on podded propulsor performance. The study aims at providing insights on characteristics of podded propulsors in azimuthing condition. In this regard, a wide numerical simulation that concerned yaw angle effect measurement on podded propeller performance was performed. The Reynolds-Averaged Navier Stokes (RANS) based solver is used in order to study the variations of hydrodynamic characteristics of podded propulsor at various angles. At first, the propeller is analyzed in open water condition in absence of pod and strut. Next flow around pod and strut are simulated without effect of propellers. Finally, the whole unit is studied in zero yaw angle and azimuthing condition. Structured and unstructured mesh techniques are used for single propeller and podded propulsor. The performance curves of the propeller obtained by numerical method are compared and verified by the experimental results. The characteristic parameters including the torque and thrust of the propeller, the axial force and side force of unit are presented as function of velocity advance ratio and yaw angle. The results shows that the propeller thrust, torque and podded unit forces in azimuthing condition depend on velocity advance ratio and yaw angle.

RANS Computation of Turbulent free Surface Flow around a Self Propelled KLNG Carrier (LNG 운반선의 자유수면을 포함한 자항상태 난류유동장의 수치해석)

  • Kim, Jin;Park, Il-Ryong;Kim, Kwang-Soo;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.583-592
    • /
    • 2005
  • The turbulent free surface flow around a self-propelled KRISO 138K LNG Carrier is numerically simulated using the finite volume based multi-block RANS code, WAVIS developed at HRISO. The realizable k-$\varepsilon$ turbulence model with a wail function is employed for the turbulence closure. The free surface is captured with the Level-Set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. In order to obtain an accurate free surface solution and stable convergence, the computations are executed with a proper fine grid refinement around the free surface and with an adoption of implicit discretization scheme for the Level-Set formulation. The computed velocity vectors at the several stations and wave patterns show a good agreement with the experimental results measured at the KRISO towing tank.

Robustness Improvement and Assessment of EARSM k-ω Model for Complex Turbulent Flows

  • Zhang, Qiang;Li, Dian;Xia, ZhenFeng;Yang, Yong
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • The main concern of this study is to integrate the EARSM into an industrial RANS solver in conjunction with the $k-{\omega}$ model, as proposed by Hellsten (EARSMKO2005). In order to improve the robustness, particular limiters are introduced to turbulent conservative variables, and a suitable full-approximation storage (FAS) multi-grid (MG) strategy is designed to incorporate turbulence model equations. The present limiters and MG strategy improve both robustness and efficiency significantly but without degenerating accuracy. Two discretization approachs for velocity gradient on cell interfaces are implemented and compared with each other. Numerical results of a three-dimensional supersonic square duct flow show that the proper discretization of velocity gradient improves the accuracy essentially. To assess the capability of the resulting EARSM $k-{\omega}$ model to predict complex engineering flow, the case of Common Research Model (CRM, Wing-Body) is performed. All the numerical results demonstrate that the resulting model performs well and is comparable to the standard two-equation models such as SST $k-{\omega}$ model in terms of computational effort, thus it is suitable for industrial applications.

Added Resistance and 2DOF Motion Analysis of KVLCC2 in Regular Head Waves using Dynamic Overset Scheme (동적 중첩격자 기법을 이용한 KVLCC2의 파랑중 부가저항 및 2자유도 운동 해석)

  • Kim, Yoo-Chul;Kim, Yoonsik;Kim, Jin;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.385-393
    • /
    • 2018
  • In this study, the analysis of 2DOF (2 Degree Of Freedom) motion and added resistance of a ship in regular head waves is carried out using RANS (Reynolds Averaged Navier-Stokes) approach. In order to improve the accuracy for large amplitude motions, the dynamic overset scheme is adopted. One of the dynamic overset schemes, Suggar++ is applied to WAVIS which is the in-house RANS code of KRISO (Korea Research Institute of Ships and Ocean Engineering). The grid convergence test is carried out using the present scheme before the analysis. The target hull form is KRISO VLCC tanker (KVLCC2) and 13 wave length conditions are applied. The present scheme shows the improved results comparing with the results of WAVIS2 in the non-inertial reference frame. The dynamic overset scheme is confirmed to give the comparatively better results for the large amplitude motion cases than the non-inertial frame based scheme.