• Title/Summary/Keyword: RAMS (Regional Atmospheric Meteorological System)

Search Result 6, Processing Time 0.019 seconds

A RAMS Atmospheric Field I Predicted by an Improved Initial Input Dataset - An Application of NOAA SST data - (초기 입력 자료의 개선에 의한 RAMS 기상장의 예측 I - NOAA SST자료의 적용 -)

  • Won, Gyeong-Mee;Jeong, Gi-Ho;Lee, Hwa-Woon;Jung, Woo-Sik;Lee, Kang-Yoel
    • Journal of Environmental Science International
    • /
    • v.18 no.5
    • /
    • pp.489-499
    • /
    • 2009
  • In an effort to examine the Regional Atmospheric Modeling System (RAMS ver. 4.3) to the initial meteorological input data, detailed observational data of NOAA satellite SST (Sea Surface Temperature) was employed. The NOAA satellite SST which is currently provided daily as a seven-day mean value with resolution of 0.1 $^{\circ}$ grid spacing was used instead of the climatologically derived monthly mean SST using in RAMS. In addition, the RAMS SST data must be changed new one because it was constructed in 1993. For more realistic initial meteorological fields, the NOAA satellite SST was incorporated into the RAMS-preprocess package named ISentropic Analysis package (ISAN). When the NOAA SST data was imposed to the initial condition of prognostic RAMS model, the resultant performance of near surface atmospheric fields was discussed and compared with that of default option of SST. We got the good results that the new SST data was made in a standard RAMS format and showed the detailed variation of SST. As the modeling grid became smaller, the SST differences of the NOAA SST run and the RAMS SST43 (default) run in diurnal variation were very minor but this research can apply to further study for the realistic SST situation and the development in predicting regional atmospheric field which imply the regional circulation due to differential surface heating between sea and land or climatological phenomenon.

Numerical Simulation for Local Circulation of Urban Area and Deposition Phenomenon (도시지역의 국지순환과 침적현상에 관한 수치모의)

  • 이화운;오은주;노순아;반수진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.773-787
    • /
    • 2003
  • There are variations in the temperature Held due to urban heat island and anthropogenic heating so that regional scale meteorological field is changed. Therefore we simulate and predict the regional climate change according to surface characteristics through regional meteorological model. This study investigates the regional meteorological field by urbanization that influences in local circulation system using CSU-RAMS and simulates dry deposition velocity (V$_{d}$) using PNU/DEM which includes surface characteristics (such as albedo, surface hydrology and rough-ness length etc.) with calculated meteorological field. During the summer, horizontal distributions of V$_{d}$ were simulated using CSU-RAMS and PNU/DEM at Busan metropolitan area. The estimated values of V$_{d}$ were larger in forest and agricultural areas than water areas since ozone with low water solubility is destroyed slowly at wet surface or water.water.

Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS (유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증)

  • Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

Analysis of Numerical Meteorological Fields due to the Detailed Surface Data in Complex Coastal Area (복잡 연안지역의 지표면 자료 상세화에 따른 수치 기상장 분석)

  • Lee, Hwa-Woon;Jeon, Won-Bae;Lee, Soon-Hwan;Choi, Hyun-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.649-661
    • /
    • 2008
  • The impact of the detailed surface data on regional meteorological fields in complex coastal area is studied using RAMS. Resolutions of topography and land use data are very important to numerical modeling, because high resolution data can reflect correct terrain height and detail characteristics of the surface. Especially, in complex coastal region such as Gwangyang area, southern area in Korean Peninsula, high resolution topography and land use data are indispensable for accurate modeling results. This study investigated the effect of resolutions of terrain data using SRTM with 3 second resolution topography and KLU with 1 second resolution land use data. Case HR was the experiment using high resolution data, whereas Case LR used low resolution data. In Case HR, computed surface temperature was higher than Case LR along the coastline and wind speed was $1{\sim}2m/s$ weaker than Case LR. Time series of temperature and wind speed indicated great agreement with the observation data. Moreover, Case HR indicated outstanding results on statistical analysis such as regression, root mean square error, index of agreement.

Numerical Study on the Impact of Meteorological Input Data on Air Quality Modeling on High Ozone Episode at Coastal Region (기상 입력 자료가 연안지역 고농도 오존 수치 모의에 미치는 영향)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Kim, Dong-Hyuk;Park, Soon-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.30-40
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of SST spatial distribution on the result of air quality modeling. Eulerian photochemical dispersion model CAMx (Comprehensive Air quality Model with eXtensions, version 4.50) was applied in this study and meteorological fields were prepared by RAMS (Regional Atmospheric Modeling System). Three different meteorological fields, due to different SST spatial distributions were used for air quality modeling to assess the sensitivity of CAMx modeling to the different meteorological input data. The horizontal distributions of surface ozone concentrations were analyzed and compared. In each case, the simulated ozone concentrations were different due to the discrepancies of horizontal SST distributions. The discrepancies of land-sea breeze velocity caused the difference of daytime and nighttime ozone concentrations. The result of statistic analysis also showed differences for each case. Case NG, which used meteorological fields with high resolution SST data was most successfully estimated correlation coefficient, root mean squared error and index of agreement value for ground level ozone concentration. The prediction accuracy was also improved clearly for case NG. In conclusion, the results suggest that SST spatial distribution plays an important role in the results of air quality modeling on high ozone episode at coastal region.

Simulation of Atmospheric Dispersion over the Yosu Area -II. Diurnal Variations by Solar Radiation- (여수지역 대기확산의 수치 모사 -II. 일사에 의한 일변화-)

  • 오현선;김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.225-236
    • /
    • 2000
  • Diurnal variations of wind field and pollutant dispersion over the Yosu area under the insolation conditions of summer and winter were investigated by using the Regional Atmospheric Modeling System (RAMS). Initially, horizontally homogeneous wind field were assumed on the basis of sounding data at the Kwangju upper-air station for days whose morning wind speeds were below 2m/s. In these days, the sea breeze prevailed in summer while the land breeze lasted for a few hours in the morning; the effect of synoptic winds was strong in winter with some inclusion of wind variations owing to the interaction between sea and land. The predicted wind direction at the location of the Yosu weather station captured an important change of the sea-land breeze of the observed one. The predicted wind speed and the air temperature agreed with observed ones in a reasonable range. In the morning, both in summer and winter, winds around the source location were diverged and became weak between the mountainous area to the southeast and the Kwangyang Bay to the north. Winds, however, accelerated while blowing to the east and south and blowing on the mountainous area. Complicated wind fields resulted in high pollutant concentrations at almost all receptors considered. These high concentrations in the morning were even comparable to the ISCST3 calculations with the worst-case and typical meteorological conditions designated by USEPA(1996). On the other hand, in the afternoon, the wind field was rather uniform even in the mountainous area with development of mixing layer and the concentration distributions being close to the Gaussian distributions.

  • PDF