• Title/Summary/Keyword: RAMAC30

Search Result 6, Processing Time 0.018 seconds

A Numerical Study on Flame Stability with Extended Combustor in Superdetonative Mode Ram Accelerator (초폭굉 모드 램 가속기의 연소실 길이에 따른 화염유지특성에 대한 수치적 연구)

  • Sung, Kun-Min;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.31-38
    • /
    • 2007
  • An numerical study was conducted on superdetonative mode ram accelerator with length extended combustor. The computation condition was based on ISL's RAMAC30 II S225 experiment. For 50% length increased combustor, flame is not sustained. For the case of 60% and 70% increase, flame is successfully sustaind. But detonation wave is oscillating and acceleration is fluctuating. Extention of combustor is helpful for sustaing detonation wave but it may cause unstart.

  • PDF

A Numerical Study on Flame Stability with Extended Combustor in Superdetonative Mode Ram Accelerator (초폭굉 모드 램 가속기의 연소실 길이에 따른 화염유지특성에 대한 수치적 연구)

  • Sung, Kun-Min;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.126-129
    • /
    • 2007
  • An numerical study was conducted on superdetonative mode ram accelerator with extended combustor. The computation case was based on ISL's RAMAC30 II experiment. For 50% length increased combustor, flame is not sustained. For the case of 60% and 70% increase, flame is successfully sustaind. But detonation wave is oscillating and acceleration is fluctuating. Increasing of combustor length is helpful for sustaing detonation wave but it may cause unstart.

  • PDF

Behavior of Detonation Wave in Superdetonative Ram Accelerator (초폭굉 모드 램 가속기에서 데토네이션파의 거동특성)

  • Sung, Kun-Min;Jeung, In-Seuck;Moon, Guee-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.28-31
    • /
    • 2005
  • The numerical simulation is conducted for analysis flame structure of superdetonative ram accelerator experiment by ISL(French-German Research Institute in Saint Louis). Fully coupled chemically non-equilibrium Navier-Stokes equation is used. Shockwave structure of superdetonative ram accelerator and behavior of detonation wave is studied. Maintaining of detonation wave is very important to accelerate projectile, Because detonation wave make high pressure gases and this high pressure accelerate projectile.

  • PDF

Numerical Study of Regular Start and Unstart Process of Superdetonative Speed Ram Accelerator (초폭굉속도 램 가속기의 정상발진 및 불발과정의 수치적 연구)

  • Moon, G.W.;Jeung, I.S.;Choi, J.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.31-41
    • /
    • 2000
  • A numerical study was conducted to investigate the combustion phenomena of regular start and unstart processes based on ISL#s RAMAC 30 experiments with different diluent amounts in a ram accelerator. The initial projectile launching speed was 1800m/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with $5CO_2\;or\;4CO_2$. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1800m/s, as was found in the experiments using a steel-covered projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the regular start and unstart processes found in the experiments with an aluminum-covered projectile. The numerical results matched almost exactly to the experimental results. As a result, it was found that the regular start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

Numerical Study of Normal Start and Unstart Processes In a Superdetonative Speed Ram Accelerator (초폭굉속도 램가속기의 정상발진과 불발과정에 대한 수치해석)

  • Moon, Guee-Won;Jeung, In-Seuck;Choi, Jeong-Yeol;Seiler, Friedrich;Patz, Gunther;Smeets, Gunter;Srulijes, Julio
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.123-132
    • /
    • 2002
  • A numerical study was conducted to investigate the combustion phenomena of normal start and unstart processes based on ISL's RAMAC 30 experiments with different diluent amounts and fill pressures in a ram accelerator. The initial projectile launching speed was 1.8 km/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with 5 $CO_2$ or 4 $CO_2$. Experiments with same condition except for projectile surface material demonstrated that ignition was successful with an aluminum projectile, but no combustion was observed in case of a steel projectile. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1.8 km/s, as was found in the experiments using a steel projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the normal start and unstart processes found in the experiments with an aluminum projectile. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations coupled with a Baldwin-Lomax turbulence model and detailed chemistry reaction equations of $H_2/O_2/CO_2$ suitable for high-pressure gaseous combustion were considered. The governing equations were discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit, time accurate integration method. The numerical results matched almost exactly to the experimental results. As a result, it was found that the normal start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF