• Title/Summary/Keyword: RAF

Search Result 146, Processing Time 0.024 seconds

High Affinity Pharmacological Profiling of Dual Inhibitors Targeting RET and VEGFR2 in Inhibition of Kinase and Angiogeneis Events in Medullary Thyroid Carcinoma

  • Dunna, Nageswara Rao;Kandula, Venkatesh;Girdhar, Amandeep;Pudutha, Amareshwari;Hussain, Tajamul;Bandaru, Srinivas;Nayarisseri, Anuraj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7089-7095
    • /
    • 2015
  • Clinical evidence shows that dual inhibition of kinases as well angiogenesis provides ideal therapeutic option in the treatment of medullary thyroid carcinoma (MTC) than inhibiting either of these with the events separately. Although treatment with dual inhibitors has shown good clinical responses in patients with MTC, it has been associated with serious side effects. Some inhibitors are active agents for both angiogenesis or kinase activity. Owing to narrow therapeutic window of established inhibitors, the present study aims to identify high affinity dual inhibitors targeting RET and VEGFR2 respectively for kinase and angiogenesis activity. Established inhibitors like Vandetanib, Cabozantinib, Motesanib, PP121, RAF265 and Sunitinib served as query parent compounds for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. All the parent inhibitors and respective similar compounds were docked against RET and VEGFR2 in order to retrieve high affinity compounds with these two proteins. AGN-PC-0CUK9P PubCID: 59320403 a compound related to PPI21 showed almost equal affinity for RET and VEGFR2 and unlike other screened compounds with no apparent bias for either of the receptors. Further, AGNPC- 0CUK9P demonstrated appreciable interaction with both RET and VEGFR2 and superior kinase activity in addition to showed optimal ADMET properties and pharmacophore features. From our in silico investigation we suggest AGN-PC-0CUK9P as a superior dual inhibitor targeting RET and VEGFR2 with high efficacy which should be proposed for pharmacodynamic and pharmacokinetic studies for improved treatment of MTC.

Mutational Analysis of Key EGFR Pathway Genes in Chinese Breast Cancer Patients

  • Tong, Lin;Yang, Xue-Xi;Liu, Min-Feng;Yao, Guang-Yu;Dong, Jian-Yu;Ye, Chang-Sheng;Li, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5599-5603
    • /
    • 2012
  • Background: The epidermal growth factor receptor (EGFR) is a potential therapeutic target for breast cancer treatment; however, its use does not lead to a marked clinical response. Studies of non-small cell lung cancer and colorectal cancer showed that mutations of genes in the PIK3CA/AKT and RAS/RAF/MEK pathways, two major signalling cascades downstream of EGFR, might predict resistance to EGFR-targeted agents. Therefore, we examined the frequencies of mutations in these key EGFR pathway genes in Chinese breast cancer patients. Methods: We used a high-throughput mass-spectrometric based cancer gene mutation profiling platform to detect 22 mutations of the PIK3CA, AKT1, BRAF, EGFR, HRAS, and KRAS genes in 120 Chinese women with breast cancer. Results: Thirteen mutations were detected in 12 (10%) of the samples, all of which were invasive ductal carcinomas (two stage I, six stage II, three stage III, and one stage IV). These included one mutation (0.83%) in the EGFR gene (rs121913445-rs121913432), three (2.50%) in the KRAS gene (rs121913530, rs112445441), and nine (7.50%) in the PIK3CA gene (rs121913273, rs104886003, and rs121913279). No mutations were found in the AKT1, BRAF, and HRAS genes. Six (27.27%) of the 22 genotyping assays called mutations in at least one sample and three (50%) of the six assays queried were found to be mutated more than once. Conclusions: Mutations in the EGFR pathway occurred in a small fraction of Chinese breast cancers. However, therapeutics targeting these potential predictive markers should be investigated in depth, especially in Oriental populations.

Blockage of Autophagy Rescues the Dual PI3K/mTOR Inhibitor BEZ235-induced Growth Inhibition of Colorectal Cancer Cells

  • Oh, Iljoong;Cho, Hyunchul;Lee, Yonghoon;Cheon, Minseok;Park, Deokbae;Lee, Youngki
    • Development and Reproduction
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Molecular targeting for the altered signaling pathways has been proven to be effective for the treatment of many types of human cancer, including colorectal cancer (CRC). The dual phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 has shown to exhibit potent antitumor activity against solid tumors. Autophagy is a cellular lysosomal catabolic process to maintain metabolic homeostasis, which has been known to be induced in response to many therapeutic agents in cancer cells. This process is negatively regulated by mTOR and often acts as prosurvival or prodeath mechanism following cancer therapeutics. The current study was designed to investigate the antiproliferation activity of BEZ235 and to evaluate the role of autophagy induced by BEZ235 using HCT15 CRC cells bearing ras oncogene mutation. We found that BEZ235 decreases cell viability, which was mostly dependent on $G_1$ arrest of cell cycle via suppression of cyclin A expression. BEZ235 affects PI3K/Akt/mTOR signaling pathway by increasing the phosphorylation of AKT at $Ser^{473}$ and RAS/RAF/MEK/ERK pathway by decreasing the phosphorylation of ERK at $Tyr^{204}$. BEZ235 also stimulated autophagy induction as evidenced by the increased expression of LC3-II and abundant acidic vesicular organelles (AVOs) in the cytoplasm. In addition, the combination of BEZ235 with autophagy inhibitor chloroquine, a known antagonist of autophagy, counteracted the antiproliferation effect of BEZ235. Thus, our study indicates that autophagy induced in response to BEZ235 treatment appears to act as cell death mechanism in HCT15 CRC cells.

Effect of Clitocybin A on the Proliferation of Dermal Papilla Cells (Clitocybin A의 모유두 세포증식 효능)

  • Kang, Jung-Il;Kim, Min-Kyoung;Yoo, Eun-Sook;Yoo, Ick-Dong;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The present study was conducted to evaluate the hair growth-promoting effect of Clitocybin A from mushroom Clitocybe aurantiaca with dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. Clitocybin A significantly increased the proliferation of immortalized rat vibrissa DPCs. Flow cytometry analysis revealed that Clitocybin A promoted cell-cycle progression through G0/G1 to S phase in immortalized rat vibrissa DPCs. In addition, Clitocybin A increased the level of cell cycle proteins such as cyclin D1, phospho-pRB, and phospho-CDK2. To elucidate the molecular mechanisms of Clitocybin A on the proliferation of DPCs, we examined the activation of wnt/${\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. Clitocybin A activated wnt/${\beta}$-catenin signaling via the increase of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-$GSK3{\beta}$. Furthermore, Clitocybin A markedly increased the activation of extracellular signal-regulated kinase (ERK). These results suggest that the Clitocybin A may induce hair growth by proliferation of DPCs via cell-cycle progression as well as the activation of Wnt/${\beta}$-catenin signaling and ERK pathway.

Non-Benzoquinone Geldanamycin Analog, WK-88-1, Induces Apoptosis in Human Breast Cancer Cell Lines

  • Zhao, Yu-Ru;Li, Hong-Mei;Zhu, Meilin;Li, Jing;Ma, Tao;Huo, Qiang;Hong, Young-Soo;Wu, Cheng-Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.542-550
    • /
    • 2018
  • Heat shock protein 90 (Hsp90) is treated as a molecular therapeutic target for the prevention and treatment of cancer. Geldanamycin (GA) was the first identified natural Hsp90 inhibitor, but hepatotoxicity has limited its clinical application. Nevertheless, a new GA analog (WK-88-1) with the non-benzoquinone skeleton, obtained from genetically engineered Streptomyces hygroscopicus, was found to have anticancer activity against two human breast cancer cell lines. WK-88-1 produced concentration-dependent inhibition of cell proliferation, cell cycle arrest, and apoptosis in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cell lines. Detailed analysis showed that WK-88-1 downregulated some key cell cycle molecules (CDK1 and cyclin B1) and lead to $G_2/M$ cell cycle arrest. Further studies also showed that WK-88-1 could induce human breast cancer cell apoptosis by downregulating Hsp90 client proteins (Akt, p-Akt, IKK, c-Raf, and Bcl-2), decreasing the ATP level, increasing reactive oxygen species production, and lowering the mitochondrial membrane potential. Meanwhile, we discovered that WK-88-1 significantly decreased the levels of Her-2 and $ER-{\alpha}$ in MCF-7 cells but not in MDA-MB-231 cells. In addition, WK-88-1 significantly increased caspase-3, -8, and -9 activities and the cleavage of PARP in a concentration-dependent manner (with the exception of caspase-3 and PARP in MCF-7 cells). Taken together, our preliminary results suggest that WK-88-1 has the potential to play a role in breast cancer therapy.

Treatment of Vemurafenib-Resistant SKMEL-28 Melanoma Cells with Paclitaxel

  • Nguyen, Dinh Thang;Phan, Tuan Nghia;Kumasaka, Mayuko Y.;Yajima, Ichiro;Kato, Masashi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.699-705
    • /
    • 2015
  • Vemurafenib has recently been used as drug for treatment of melanomas with $BRAF^{V600E}$ mutation. Unfortunately, treatment with only vemurafenib has not been sufficiently effective, with recurrence after a short period. In this study, three vemurafenib-resistant $BRAF^{V600E}$ melanoma cell lines, $A375P^R$, $A375M^R$ and SKMEL-$28^R$, were established from the original A375P, A375M and SKMEL-28 cell lines. Examination of the molecular mechanisms showed that the phosphorylation levels of MEK and ERK, which play key roles in the RAS/RAF/MEK/ERK signaling pathway, were reduced in these three cell lines, with increased phosphorylation levels of pAKTs limited to SKMEL-$28^R$ cells. Treatment of SKMEL-$28^R$ cells with 100 nM paclitaxel resulted in increased apoptosis and decreased cellular proliferation, invasion and colony formation via reduction of expression levels of EGFR and pAKTs. Moreover, vemurafenib-induced pAKTs in SKMEL-$28^R$ were decreased by treatment with an AKT inhibitor, MK-2206. Taken together, our results revealed that resistance mechanisms of $BRAF^{V600E}$-mutation melanoma cells to vemurafenib depended on the cell type. Our results suggested that paclitaxel should be considered as a drug in combination with vemurafenib to treat melanoma cells.

Characterization of Matrix Metalloproteinase Expression in Triglyceride Treated THP-1 Macrophages

  • Cho, Yoonjung;Lim, Jaewon;Lee, Dong Hyun;Jung, Byung Chul;Lee, Min Ho;Jung, Dongju;Kim, Yoon Suk;Kim, Tae Ue;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Elevated blood triglyceride (TG) levels correlate with development of atherosclerosis suggesting that TG may promote the development of this disease. During atherosclerosis, TG is taken up by tissue macrophages which result in dramatic changes in various secreted factors. One such factor is the family of matrix metalloproteases (MMP) which are involved in tissue remodeling during both physiological and pathological processes. In this study, we examined the MMP expression profile in PMA-differentiated THP-1 macrophages treated with TG. We found that TG-treated THP-1 macrophages showed decreased expression of MMP-3, MMP-7, MMP-8 and MMP-9 in a time- and dose-dependent manner. In contrast, expression of MMP-1, MMP-2, and MMP-10 remained relatively unchanged after TG treatment. In addition, we found that expression of select MMPs was affected by various inhibitors of signaling pathways. In particular, expression of MMP-3 was slightly recovered by cRAF and PLC signaling pathway inhibitors. These data suggests a possible role of MMPs in macrophages during TG-induced atherosclerosis.

Anti-septic effects of dabrafenib on HMGB1-mediated inflammatory responses

  • Jung, Byeongjin;Kang, Hyejin;Lee, Wonhwa;Noh, Hyun Jin;Kim, You-Sun;Han, Min-Su;Baek, Moon-Chang;Kim, Jaehong;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.214-219
    • /
    • 2016
  • A nucleosomal protein, high mobility group box 1 (HMGB1) is known to be a late mediator of sepsis. Dabrafenib is a B-Raf inhibitor and initially used for the treatment of metastatic melanoma therapy. Inhibition of HMGB1 and renewal of vascular integrity is appearing as an engaging therapeutic strategy in the administration of severe sepsis or septic shock. Here, we examined the effects of dabrafenib (DAB) on the modulation of HMGB1-mediated septic responses. DAB inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses by enhancing the expressions of cell adhesion molecules (CAMs) in human endothelial cells. In addition, treatment with DAB inhibited the HMGB1 secretion by CLP and sepsis-related mortality and pulmonary injury. This study demonstrated that DAB could be alternative therapeutic options for sepsis or septic shock via the inhibition of the HMGB1 signaling pathway.

Effects of Nicotine and Tobacco-Specific Nitrosamine on Carcinogenesis (Nicotine 및 Tobacco-Specific Nitrosamine이 발암과정에 미치는 영향)

  • Kang, Ho-Il;Park, Mi-Sun;Kim, Ok-Hee
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.3
    • /
    • pp.118-123
    • /
    • 2005
  • Nicotine has been implicated as a potential factor in the pathogenesis of human lung cancer, however its mechanism of action in the development of lung cancer remains largely unknown. To explore the role of nicotine in the development of lung cancer, we first investigated the effects of nicotine on the expression of tumor associated genes by treating Sprague-Dawley rats with nicotine (10 mg/kg) by gavage once daily for 10 days. We determined the expression of proteins and mRNAs of the ras, raf, myc, jun, fos oncogenes and p53, Rb tumor suppressor genes by Western and Northern blotting, respectively. We did not detect any changes on the levels of proteins and mRNAs of these tumor associated genes in the lung of Sprague-Dawley rats from 3 days to 12 weeks after the last treatment of nicotine, indicating that nicotine appears to have no effect on expression of these oncogenes and tumor suppressor genes at an early stage in multistage chemical carcinogenesis. In a second experiment, we investigated the possibility that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) could be formed endogenously by treating with nicotine and sodium nitrite. We treated groups of Fischer 344 rats with nicotine ($60{\mu}mol/kg$) and sodium nitrite ($180{\mu}mol/kg$), nicotine, sodium nitrite and NNK (120 nmol/kg) alone by gavage once daily for 7 days, respectively and determined the 8-hydroxydeoxyguanosine (8-OHdG), as an indicator of NNK formation, in the lungs of rats 24 hours and 48 hours after the last treatment by HPLC/ECD method. We detect increased level of 8-OHdG in the lungs of rats treated with NNK, but in the case of nicotine plus sodium nitrite, nicotine and sodium nitrite alone we could not detected any changes of 8-OHdG, respectively.

  • PDF

Combination of BEZ235 and Metformin Has Synergistic Effect on Cell Viability in Colorectal Cancer Cells

  • Kim, Taewan;Kim, Taehyung;Choi, Soonyoung;Ko, Hyeran;Park, Deokbae;Lee, Youngki
    • Development and Reproduction
    • /
    • v.22 no.2
    • /
    • pp.133-142
    • /
    • 2018
  • Patients with type II diabetes mellitus are more susceptible to colorectal cancer (CRC) incidence than non-diabetics. The anti-diabetic drug metformin is most commonly prescribed for the treatment of this disease and has recently shown antitumor effect in preclinical studies. The aberrant mutational activation in the components of RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling pathway is very frequently observed in CRC. We previously reported that metformin inhibits the phosphorylation of ERK and BEZ235, a dual inhibitor of PI3K and mTOR, has anti-tumor activity against HCT15 CRC cells harboring mutations of KRAS and PIK3CA. Therefore, we hypothesized that simultaneous inhibition of two pathways by combining metformin with BEZ235 could be more effective in the suppression of proliferation than single agent treatment in HCT15 CRC cells. Here, we investigated the combinatory effect of metformin and BEZ235 on the cell survival in HCT15 CRC cells. Our study shows that both of the two signaling pathways can be blocked by this combinational strategy: metformin suppressed both pathways by inhibiting the phosphorylation of ERK, 4E-BP1 and S6, and BEZ235 suppressed PI3K/AKT/mTOR pathway by reducing the phosphorylation of 4E-BP1 and S6. This combination treatment synergistically reduced cell viability. The combination index (CI) values ranged from 0.44 to 0.88, indicating synergism for the combination. These results offer a preclinical rationale for the potential therapeutic option for the treatment of CRC.