• 제목/요약/키워드: RADIANCE

검색결과 342건 처리시간 0.026초

Study on the possibility of the aerosol and/or Yellow dust detection in the atmosphere by Ocean Scanning Multispectral Imager(OSMI)

  • Chung, Hyo-Sang;Park, Hye-Sook;Bag, Gyun-Myeong;Yoon, Hong-Joo;Jang, Kwang-Mi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.409-414
    • /
    • 1998
  • To examine the detectability of the aerosol and/or Yellow dust from China crossing over the Yellow sea, three works carried out as follows , Firstly, a comparison was made of the visible(VIS), water vapor(WV), and Infrared(IR) images of the GMS-5 and NOAA/AVHRR on the cases of yellow sand event over Korea. Secondly, the spectral radiance and reflectance(%) was observed during the yellow sand phenomena on April, 1998 in Seoul using the GER-2600 spectroradiometer, which observed the reflected radiance from 350 to 2500 nm in the atmosphere. We selected the optimum wavelength for detecting of the yellow sand from this observation, considering the effects of atmospheric absorption. Finally, the atmospheric radiance emerging from the LOWTRAN-7 radiative transfer model was simulated with and without yellow sand, where we used the estimated aerosol column optical depth ($\tau$ 673 nm) in the Meteorological Research Institute and the d'Almeida's statistical atmospheric aerosol radiative characteristics. The image analysis showed that it was very difficult to detect the yellow sand region only by the image processing because the albedo characteristics of the sand vary irregularly according to the density, size, components and depth of the yellow sand clouds. We found that the 670-680 nm band was useful to simulate aerosol characteristics considering the absorption band from the radiance observation. We are now processing the simulation of atmospheric radiance distribution in the range of 400-900 nm. The purpose of this study is to present the preliminary results of the aerosol and/or Yellow dust detectability using the Ocean Scanning Multispectral Imager(OSMI), which will be mounted on KOMPSAT-1 as the ocean color monitoring sensor with the range of 400-900 nm wavelength.

  • PDF

라플라시안 피라미드와 주성분 분석을 이용한 가시광과 적외선 영상 합성 (Visible and NIR Image Synthesis Using Laplacian Pyramid and Principal Component Analysis)

  • 손동민;권혁주;이성학
    • 센서학회지
    • /
    • 제29권2호
    • /
    • pp.133-140
    • /
    • 2020
  • This study proposes a method of blending visible and near infrared images to enhance edge details and local contrast. The proposed method consists of radiance map generation and color compensation. The radiance map is produced by a Laplacian pyramid and a soft mixing method based on principal component analysis. The color compensation method uses the ratio between the composed radiance map and the luminance channel of a visible image to preserve the visible image chrominance. The proposed method has better edge details compared to a conventional visible and NIR image blending method.

Ocean Scanning Multi-spectral Imager (OSMI) Pre-Launch Radiometric Performance Analysis

  • Cho, Young-Min
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.390-395
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography KOMPSAT will be launched in the middle of November this year. The radiometric performance of OSMI is analyzed for various gain settings in the viewpoint of the instrument developer for OSMI calibration and application based on its ground performance measurement data for 8 primary spectral bands of OSMI. The radiometric response linearity and dynamic range are analyzed for the image radiometric calibration and the estimation of OSMI image quality for the ocean remote sensing area. The dynamic range is compared with the nominal input radiance for the ocean and the land. The noise equivalent radiance (NER) corresponding to the instrument radiometric noise is compared with the radiometric resolution of signal digitization (1-count equivalent radiance). The best gain setting of OSMI for ocean monitoring is recommended. This analysis is considered to be useful for the OSMI mission and operation planning, the OSMI image data calibration, and users' understanding about OSMI image quality.

  • PDF

RADIANCE 프로그램을 이용한 인터넷 웹기반 가시화 시스템에서의 조명기구 DB구축 (Establishment of the Luminaire DB on Internet Web-based Visualization System Using RADIANCE Program)

  • 오은숙;이준형;최안섭;송규동
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2002년도 학술대회논문집
    • /
    • pp.239-242
    • /
    • 2002
  • With existing illumination rendering system being used in domestic, internationally developed common programs are taking over the market more than 90%. However, since the programs are established with DB designed to be most suitable for their own products, accuracy in analysis and visualized image are hardly reliable. This raises the necessities of establishing DB for domestic developed products. A method of establishing artificial luminair DB, which was studied on DB establishment in consideration of optical characteristics of domestic products with using RADIANCE program was presented in this study, and it is considered as the program of simulating light movement most accurately among all rendering programs developed so far.

  • PDF

Estimation of Earth Outgoing Longwave Radiation from Satellite Observation

  • Oh, Sung-Nam
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 1992년도 한국우주과학회보 제1권1호
    • /
    • pp.12-12
    • /
    • 1992
  • Results from the Earth Radiation Budget Experiment (ERBE) will help interpret the data from the operational satellite system. However, a major problem exists because a follow-on experiment to ERBE is not planned until the late 1990`s. Meanwhile, it will be necessary to provide OLR estimates from the operational satellite system. Since 1973the outgoing long wave radiation(OLR) data have been obtained by the 10#m window radiance(AVHRR) estimation technique from he observation NOAA operational satellites. However, those data have not been universall if accepted because they are estimated from the radiance in but one narrow spectral regiou. However , this type of technique has not been exploited for use with data from the ]fIRS multispectral radiometer. Since the radiance data measured by HIRS contains more: information on atmospheric variables than the AVHRR, it is a potentially better instrument for operational estimates of the OLR In this study, results from model are better flux estimates than the AVHRR, The technique is then tested by comparing simultalleous AVHRR and HIRS OLR estimations with a radiation model flux calculation froml homogeneous atmospheric scenes at the regions of desert and subtropic ocean.

  • PDF

광센서 조광제어시스템에서의 광센서 모델링에 관한 기초적 연구 -RADIANCE 프로그램 활용- (A Fundamental Study on the Photosensor Modeling for the Daylight Responsive Dimming System - Using RADIANCE Program)

  • 홍성관;박병철;최안섭;이정호
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2008
  • The daylight responsive dimming system is an energy saving system that automatically controls lighting output of artificial lighting according to available daylight in inside, as well as keeps uniform workplace illuminance. The basic three components of the daylight responsive dimming system consist of a photosensor, a controller and a dimming ballast. This paper is a fundamental study of photosensor modeling for the daylight responsive dimming system. The correlation between photosensor illuminance on the ceiling and workplace illuminance is an important factor to accuracy of system performance, so that the purpose of this study is to improve accuracy for daylight responsive dimming system. This study performs to derive the optimized conditions of photosensor using the RADIANCE.

  • PDF

Comparison of Measured and Predicted Daylight Illuminances in Two Underground Spaces

  • Kim, Kang Soo;Paek, Seung Yeob;Kim, Han Seong
    • Architectural research
    • /
    • 제4권1호
    • /
    • pp.17-23
    • /
    • 2002
  • Daylight simulation methods play an important role for the prediction of daylight illuminances in underground spaces. This daylighting project is designed to compare daylight prediction methods for the application of large underground spaces. In this study, actual measurements were conducted under overcast and clear sky conditions. Also, computer simulations by Radiance, Superlite IEA 2.0 program and scale model testings were conducted to be compared with measured data. Simulation results show the data by Radiance, Superlite IEA 2.0 and the scale model are similar to the measured data in two underground spaces in Seoul. Overall results show that Radiance and superlite IEA 2.0 proved to be useful to predict daylight illuminances even in big underground spaces.

Seasonal Variation of Attenuation Coefficient Spectra Extracted from Yamato Bank Optical Moored Buoy Data

  • Senga, Yasuhiro;Horiuchi, Tomohiro
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.89-94
    • /
    • 1998
  • Seasonal variation of attenuation coefficient spectra in Japan sea was extracted from underwater radiance/irradiance spectra observed by a moored buoy system developed by National Space Development Agency of Japan (NASDA). The buoy was deployed 9 months from August 31, 1996 to June 1, 1997. Throughout this period, it was collecting downward irradiance and upward radiance spectra under water at the depth of 1.5m and 6.5m everyday. The dairy averaged diffused attenuation coefficient spectra and underwater reflectance spectra were calculated. The results were compared with the absorption spectra of filtered samples obtained by validation cruises, which carried out 5 times during the moored period. Also, the natural fluorescence of chlorophyll a were extracted from the upward radiance spectra observed at 1.5m depth. The seasonal variation of the calculated attenuation coefficient spectra and the natural fluorescence were examined. The result shows a weak blooming of phytoplankton on November and a large blooming on April.

  • PDF

광원의 분광 방사 분포의 추정과 관찰조건에 따른 대응적 색재현 (Estimation of Spectral Radiant Distribution of Illumination and Corresponding Color Reproduction According to Viewing Conditions)

  • 방상택;이철희;곽한봉;유미옥;안석출
    • 한국인쇄학회:학술대회논문집
    • /
    • 한국인쇄학회 2000년도 춘계 학술발표회 논문집
    • /
    • pp.35-44
    • /
    • 2000
  • Because Image on the CRT change under different illuminants, human is difficult to see original color of object. If what is information of used illuminant on capturing object know, image can be transformed according to viewing condition using the linear matrix method. To know information of used illuminant at an image, the spectral radiance of illuminant can be estimated using the linear model of Maloney and Wandell form an image. And then image can be properly transformed it using color appearance model. In this paper, we predict the spectral radiance of illuminant using spectral power distribution of specular light and using surface spectral reflectance at maximum gray area. and then we perform visual experiments for the corresponding color reproduction according to viewing condition. In results, we ensure that the spectral radiance of illuminant at an image can be well estimated using above algorithms and that human visual system is 70% adapted to the monitor's white point and 30% to ambient light when viewing softcopy images.

Prelaunch Radiometric Performance Analysis of Ocean Scanning Multi-spectral Imager (OSMI)

  • Cho, Young-Min
    • 대한원격탐사학회지
    • /
    • 제16권2호
    • /
    • pp.135-143
    • /
    • 2000
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-Purpose SATellite (KOMPSAT) to perform global ocean color monitoring for the study of biological oceanography. HOMPSAT was launched 21 December 1999. The radiometric performance of OSMI is analyzed for various gain settings in the viewpoint of the instrument developer for OSMI calibration and application based on its ground performance data measured before launch. The radiometric response linearity and dynamic range are analyzed and the dynamic range is compared with the nominal input radiance for the ocean and the land. The noise equivalent radiance (NER) corresponding to the instrument radiometric noise is compared with the radiometric resolution of signal digitization (1-count equivalent radiance). The best gain setting of OSMI for ocean monitoring is recommended. This analysis is considered to be useful for the OSMI mission and operation planning, the OSMI image data calibration, and users' understanding about OSMI image quality.