• Title/Summary/Keyword: RADIANCE

Search Result 344, Processing Time 0.019 seconds

Analysis of Radiative Characteristics at Urban Area by Observation in Summer Season (하절기 도시의 지역별 장.단파복사 특성 분석과 해석)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.133-144
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1)In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2)The upper part of atmosphere layers in the urban are aabsorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3)The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and 1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas. (4)The net radiation of the rural was lower that of the urban. It was found that the energy in and outflow of the rural is easier than that of the urban. (5)The temperature variation for the long-wave radiation change of the rural showed more sensitive than that of the urban. It was came from the radiation characteristics of the surrounding environment and can be used as the important index to evaluate the thermal environment characteristic of urban.

Size-of-source Effect and Self-radiation Effect of an Infrared Radiation Thermometer (적외선 복사온도계의 복사원 크기효과 및 자기복사효과)

  • Yoo, Yong-Shim;Kim, Bong-Hwak;Park, Chul-Woung;Park, Seung-Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.133-138
    • /
    • 2010
  • All radiation thermometers have a size-of-source effect (SSE) and a self-radiation effect (SRE). The SSE,defined as dependence of the detector signal of a radiation thermometer on the diameter of a source, is critically dependent on the wavelength since diffraction is the main cause. In this paper, we have measured the SSE and the SRE of TRT2 (Transfer Radiation Thermometer 2, HEITRONICS) widely used as a transfer standard in low and middle temperature range. At $300^{\circ}C$, The radiation temperature difference between the 60 mm diameter blackbody and 10 mm diameter blackbody due to the SSE was estimated to be $3.5^{\circ}C$ in low temperature mode ($8-14\;{\mu}m$) and $0.5^{\circ}C$ in middle temperature mode ($3.9\;{\mu}m$). In addition, the measured radiation temperature difference of the blackbody due to the SRE was found to be 110 mK when the body temperature change of TRT2 was set at $2.6^{\circ}C$.

Establishment of Comparison Calibration Equipment for Infrared-radiation Thermometers Below ℃ (℃ 이하 적외선 복사온도계 비교 교정장치 구축)

  • Yoo, Yong Shim;Kim, Bong-Hak
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.2
    • /
    • pp.70-76
    • /
    • 2018
  • Comparison calibration equipment for infrared-radiation thermometers below $0^{\circ}C$ has been established, using a TRT2 (transfer radiation thermometer 2, HEITRONICS) as a transfer standard and an ME30 (Model: ME30, HEITRONICS) as a variabletemperature blackbody. The TRT2 was calibrated using three fixed points (Ice ($0.01^{\circ}C$), In ($156.5985^{\circ}C$), and Sn ($231.928^{\circ}C$)) and the Planckian Sakuma-Hattori equation, and including the interpolation and extrapolation errors at $-50^{\circ}C$ in the uncertainty. The pneumatic lid is installed upon opening of the ME30 and is opened for only 30 seconds for measuring the radiation temperature, which prevents formation of ice in the ME30 and also reduces the calibration time to half. The farther away from the $0{\sim}232^{\circ}C$ region, the larger the uncertainty of the comparison calibration equipment becomes. The expanded uncertainty of the comparison calibration equipment was estimated as 0.26 K at $-20^{\circ}C$.

Analysis of Thermal Characteristics for Areas of Musim Stream in Cheongju City (청주시 무심천 주변의 열환경 특성 분석)

  • Park, Jin-Ki;Na, Sang-Il;Park, Jong-Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • The urban thermal environment can be an important index to detect heat island phenomena and manage it to improve urban life quality. Cheongju is a typical plain-city that main part has been formed and developed in lowland. The Mushim stream crosses the city from south to north. We reviewed the use of thermal remote sensing in stream around areas and the thermal environments, focusing primarily on the Urban Heat Island(UHI) effect. The purpose of this study is to determine the relationship between the stream nearby urban area and the stream cooling effect of UHI. The objectives are to determine the usefulness of KOMPSAT-2 bands MS3 and MS4 for vegetation cover mapping, and the usefulness of LANDSAT TM band 6 in identifying thermal environmental characteristics and UHI. Land Surface Temperatures (LST) are retrieved by single-channel algorithm to study the UHI from the 6th band (thermal infrared band) of LANDSAT TM images and thermal radiance thermometer based on remote sensing method and the LST distribution maps are accomplished according to the retrieval results. There is also comparison of satellite-derived and in situ measured temperature. The results indicated that the LST of urban center is higher than that of suburban area, the temperature of mountain and water are the lowest area, so it is clearly proved that there are obvious UHI effects by stream. The surface temperature distribution of Mushim stream is detected $2^{\circ}C$ lower than urban area.

Seasonal Variation of Water Temperature Before and After Weir Construction Using Satellite Image in the Nakdong River (낙동강유역에서 위성영상을 이용한 보 건설 전후 수온의 계절변화)

  • Kim, Sang-Woo;Kim, Hae-Dong;Lim, Jin-Wook;Ahn, Ji-Suk
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1417-1430
    • /
    • 2015
  • In this study we were to explore the seasonal variation of water temperature distributions before and after weir construction at Gumi, Chilgok, Gangjung(Goryung), Dalsung in the Nakdong River using Landsat satellite images. Relationship between in-situ water temperature and radiance values of Landsat-5, 7, 8 satellite images showed high correlation. Seasonal variation of water temperature in Nakdong River showed that the fluctuation ranges of water temperature before weir construction were larger than those after weir construction. This indicated that the variation of water temperature is due to the difference of heat storage volume by weir construction and dredging work. In particular, the water temperature after weirs construction in autumn was 4-8 times lower than that before weirs construction. Water temperature after weir construction decreased in spring and summer at the downstream of Gumi weir and Gangjung(Goryung) weir, and the upstream of Dalsung weir. In autumn and winter, the water temperature after weir construction increased in the upstream and downstream of the whole weirs except upstream of Gumi weir. Relationship between water temperature and meteorological elements (air temperature, wind speed, sunshine, radiation) showed high correlation of above 94% in air temperature, and then radiation was high correlation before and after 65%.

The analysis on properties of IR emitter unit device fabricated by using MEMS technology for Infrared Scene Projector (MEMS 기술을 이용하여 제작한 적외선 영상 투사용 에미터 단위 소자의 특성 분석)

  • Park, Ki Won;Shin, Young Bong;Kang, In-Ku;Lee, Hee Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.31-36
    • /
    • 2017
  • In this paper, designed infrared (IR) emitter device for infrared scene projector (IRSP) which is used for evaluating the performance of IR sensor systems was simulated by using finite element analysis (FEA) tool and fabricated by using MEMS (Micro Electro-Mechanical System) technology. The performance of the fabricated IR emitter unit device was characterized in the vacuum chamber by using IR image microscope for MWIR($3{\sim}5{\mu}m$), which showed 423K apparent temperature (Tapp) and 22msec time constant (${\tau}$).

Analysis on optical property in the South Sea of Korea by using Satellite Image : Study of Case on red tide occurrence in August 2013 (위성영상을 활용한 한국 남해의 광학적 특성 연구 : 2013년 8월 발생한 적조 사례를 중심으로)

  • Bak, Su-Ho;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.723-728
    • /
    • 2016
  • This study is analyzed the optical property of red tide pixel by using Landsat-7 ETM+, Landsat-8 OLI and COMS/GOCI image. In order to sample red tide pixel, Landsat-7, 8 true color image were used and obtained coordinate of red tide pixel in the true color image. Normalized water leaving radiance(nLw) and absorption coefficient were obtained from GOCI image in the same coordinate of the true color image. When red tide was not occurred the main absorption range was 412nm and 660nm but when red tide occurred it was 660nm and absorption coefficient in 412nm are drastically reduced. It made no difference of nLw spectrum between red tide pixel and non red tide pixel in nLw, but the absolute value of nLw was low than non red tide pixel, especially 660nm and 680nm wavelength sharply decrease.

Pre-processing and Bias Correction for AMSU-A Radiance Data Based on Statistical Methods (통계적 방법에 근거한 AMSU-A 복사자료의 전처리 및 편향보정)

  • Lee, Sihye;Kim, Sangil;Chun, Hyoung-Wook;Kim, Ju-Hye;Kang, Jeon-Ho
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.491-502
    • /
    • 2014
  • As a part of the KIAPS (Korea Institute of Atmospheric Prediction Systems) Package for Observation Processing (KPOP), we have developed the modules for Advanced Microwave Sounding Unit-A (AMSU-A) pre-processing and its bias correction. The KPOP system calculates the airmass bias correction coefficients via the method of multiple linear regression in which the scan-corrected innovation and the thicknesses of 850~300, 200~50, 50~5, and 10~1 hPa are respectively used for dependent and independent variables. Among the four airmass predictors, the multicollinearity has been shown by the Variance Inflation Factor (VIF) that quantifies the severity of multicollinearity in a least square regression. To resolve the multicollinearity, we adopted simple linear regression and Principal Component Regression (PCR) to calculate the airmass bias correction coefficients and compared the results with those from the multiple linear regression. The analysis shows that the order of performances is multiple linear, principal component, and simple linear regressions. For bias correction for the AMSU-A channel 4 which is the most sensitive to the lower troposphere, the multiple linear regression with all four airmass predictors is superior to the simple linear regression with one airmass predictor of 850~300 hPa. The results of PCR with 95% accumulated variances accounted for eigenvalues showed the similar results of the multiple linear regression.

Adjoint-Based Observation Impact of Advanced Microwave Sounding Unit-A (AMSU-A) on the Short-Range Forecast in East Asia (수반 모델에 기반한 관측영향 진단법을 이용하여 동아시아 지역의 단기예보에 AMSU-A 자료 동화가 미치는 영향 분석)

  • Kim, Sung-Min;Kim, Hyun Mee
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.93-104
    • /
    • 2017
  • The effect of Advanced Microwave Sounding Unit-A (AMSU-A) observations on the short-range forecast in East Asia (EA) was investigated for the Northern Hemispheric (NH) summer and winter months, using the Forecast Sensitivity to Observations (FSO) method. For both periods, the contribution of radiosonde (TEMP) to the EA forecast was largest, followed by AIRCRAFT, AMSU-A, Infrared Atmospheric Sounding Interferometer (IASI), and the atmospheric motion vector of Communication, Ocean and Meteorological Satellite (COMS) or Multi-functional Transport Satellite (MTSAT). The contribution of AMSU-A sensor was largely originated from the NOAA 19, NOAA 18, and MetOp-A (NOAA 19 and 18) satellites in the NH summer (winter). The contribution of AMSU-A sensor on the MetOp-A (NOAA 18 and 19) satellites was large at 00 and 12 UTC (06 and 18 UTC) analysis times, which was associated with the scanning track of four satellites. The MetOp-A provided the radiance data over the Korea Peninsula in the morning (08:00~11:30 LST), which was important to the morning forecast. In the NH summer, the channel 5 observations on MetOp-A, NOAA 18, 19 along the seaside (along the ridge of the subtropical high) increased (decreased) the forecast error slightly (largely). In the NH winter, the channel 8 observations on NOAA 18 (NOAA 15 and MetOp-A) over the Eastern China (Tibetan Plateau) decreased (increased) the forecast error. The FSO provides useful information on the effect of each AMSU-A sensor on the EA forecasts, which leads guidance to better use of AMSU-A observations for EA regional numerical weather prediction.

Data Processing System for the Geostationary Ocean Color Imager (GOCI) (천리안해양관측위성을 위한 자료 처리 시스템)

  • Yang, Hyun;Yoon, Suk;Han, Hee-Jeong;Heo, Jae-Moo;Park, Young-Je
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.74-79
    • /
    • 2017
  • The Geostationary Ocean Color Imager (GOCI), the world's first ocean color sensor operated in a geostationary orbit, can be utilized to mitigate damages by monitoring marine disasters in real time such as red tides, green algae, sargassum, cold pools, typhoons, and so on. In this paper, we described a methodology and procedure for processing GOCI data in order to maximize its utilization potential. The GOCI data processing procedure is divided into data reception, data processing, and data distribution. The kinds of GOCI data are classified as raw, level 1, and level 2. "Raw" refers to an unstructured data type immediately generated after reception by satellite communications. Level 1 is defined as a radiance data type of two dimensions, generated after radiometric and geometric corrections for raw data. Level 2 indicates an ocean color data type from level-1 data using ocean color algorithms.