• Title/Summary/Keyword: R290

Search Result 365, Processing Time 0.022 seconds

Experimental studies on the evaporative heat transfer of R32/290 mixtures in a horizontal smooth tube (평활관 내 R32/290 혼합냉매의 증발열전달 특성에 관한 실험적 연구)

  • Cho, Jin-Min;Kim, Ju-Hyok;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.268-273
    • /
    • 2005
  • Because of environmental issues caused by CFC, HCFC or HFC refrigerants, new alternative refrigerants has gained a significant attention. This paper presents experimental information on heat transfer coefficient and pressure drop behavior during evaporation process of R32/290 mixtures in a horizontal smooth tube. A smooth tube with outer diameter of 5 mm and length of 5 m was selected as a test tube. Heat transfer coefficients and pressure drop characteristics were measured for a range of mass fluxes from 497 to 994 $kg/m^2s$, heat fluxes from 12 to 20 $kW/m^2$ and for several mixture compositions(100/0, 75/25, 58.4/41.6, 2s/75, 100/0 by wt% of R32/290). The differences of measured heat transfer characteristics among various R32/290 refrigerant mixtures were analyzed for various compositions.

  • PDF

Condensation heat transfer characteristics of hydrocarbon. refrigerants inside horizontal tubes (수평평활관내 탄화수소계 냉매의 응축전열 특성에 관한 연구)

  • 이용언;박승준;정진호;장승환;오후규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.15-20
    • /
    • 2001
  • This study investigated the condensation heat transfer coefficients of R-22, R-290 and R-600a inside horizontal tube. Heat transfer measurements were peformed for smooth tube with outside diameter of 12.7 mm Condensation temperatures and mass velocity were ranged from 308 K to 323 K and $51kg/\textrm{m}^2s$s to $250kg/\textrm{m}^2s$, respectively. The test results showed that the local condensation heat transfer coefficients increased as the mass flux increased, and also the effects of mass velocity on heat transfer coefficients of R-290 and R-600a were less than R-22. Average condensation heat transfer coefficients of natural refrigerants were superior to that of R-22. The present results had a good agreement with Haraguchi's correlation.

  • PDF

An Experimental Study on Vapor-Liquid Equilibria of HFC and HC Refrigerant Mixtures (탄화수소 및 불화탄화수소 혼합냉매의 기상-액상 평형에 관한 실험적 연구)

  • 강병복;김민수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.1031-1037
    • /
    • 2000
  • Isothermal vapor-liquid equilibrium(VLE) data have been obtained for the systems of propane(R290)+1,1,1,2-tetrafluoroethane(R134a) and 1,1,1,2-tetrafluoroethane(R134a)+isobutane(R60A) in the temperature range of 253.15 to 323.15K. Experiments were performed in a circulation type apparatus by injecting vapor through liquid pool using a magnetic pump. Both systems form azeotropes in the temperature range of this study. The experimental results were estimated with the Peng-Robinson equation of state. When the temperature-dependent binary interaction parameter was used in the Peng-Robinson equation of state, the absolute average deviation of the measured bubble point pressures from the values correlated by the Peng-Robinson equation was 0.65% and 0.78% for R290+R134a and R134a+600a, respectively. Azeotropic compositions for both systems were presented.

  • PDF

Cycle Simulation of the Air-Conditioner Using Alternatives to R22 (R22의 대체냉매를 사용한 공기조화기의 성능 시뮬레이션)

  • Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.47-53
    • /
    • 1994
  • Cycle simulation of the air-conditioner was carried out using a number of candidate alternatives to R22;R32/R125/R134a(30/10/60, by mass percent), R32/R125/R134a(10/70/20), R32/R134a(25/75), R32/R134a(30/70), R32/R125(60/40), R290(propane) and R134a. In this study, we considered only the basic parts of the air-conditioner such as the compressor, the evaporator, the condenser and the capillary tube, for the purpose of analysis. The performance characteristics of alternatives considered here were examined by comparing with the case using R22 at the constant volumetric flow rate condition. The results of our analysis revealed that the use of refrigerant mixtures, R32/R134a(30/70) and R32/R125/R134a(30/10/60), was appropriate for the alternatives to R22 in view of the cooling capacity and the COP. For the case of using R134a and R290, the COP was observed to increase under the same volumetric flow rate condition, but the cooling capacity was substantially decreased. Therefore the use of R134a and R290 should be accompanied with increasing considerably the size of compressor in order to maintain the same cooling capacity of R22.

  • PDF

Boiling Heat Transfer Characteristics of R-290 in Horizontal Smooth Minichannel (수평미세관내 R-290의 비등열전달 특성)

  • Choi, Kwang-Il;Pamitran, A.S.;Oh, Jong-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.906-914
    • /
    • 2006
  • The present paper dealt with an experimental study of boiling heat transfer characteristics of R-290. Pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel were obtained with inner tube diameter of 3.0 mm and length of 2,000 mm. The direct electric heating method was applied for supplying a heat to the refrigerant uniformly. The experiments were conducted with R-290 purity of 99.99%, at saturation temperature of 0 to $10^{\circ}C$, a mass flux range of $50{\sim}250kg/m^2s$, and a heat flux range of $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increased with increasing mass flux and saturation temperature, wherein the effect of mass flux was higher than that of the saturation temperature. Heat flux has a low effect on the increasing of heat transfer coefficient. The heat transfer coefficient was compared with six existing heat transfer coefficient correlations. The Zhang et al.'s correlation (2004) gave the best prediction of heat transfer coefficient. A new correlation to predict the two-phase flow heat transfer coefficient was developed based on the Chen correlation. The new correlation predicted the experimental data well with a mean deviation of 11.78% and average deviation of -0.07%.

Exergy Analysis and Optimization of Chiller System in Hydrogen Fueling Station Using R290 Refrigerant (R290 냉매를 이용한 수소 충전소 냉각시스템 엑서지 분석 및 공정 최적화)

  • HYEON, SOOBIN;CHOI, JUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.356-364
    • /
    • 2021
  • During the hydrogen fueling process, hydrogen temperature inside the compressed tank were limited below 85℃ due to the allowable pressure of tank material. The chiller system to cool compressed hydrogen used R407C, greenhouse gas with a high global warming potential (GWP), as a refrigerant. To reduce greehouse gas emission, it should be replaced by refrigerant with a low GWP. This study proposes a chiller system for fueling hydrogen with R290, consisted in propane, by applying the C3 pre-cooled system use d in the LNG liquefaction process. The proposed system consisted of hydrogen compression and cooling sections and optimized the operating pressure through exergy analysis. It was also compared to the exergy efficiency with the existing system at the optimal operating pressure. The result showed that the optimal operating pressure is 700 kPa in 2-stage, 840 kPa/490 kPa in 3-stage, and the exergy efficiency increased by 17%.

Condensing Heat Transfer Charactristics of R-22 Alternative Refrigerants on Water Sources Heat Pump (수열원 펌프에서의 R-22 대체냉매의 응축열전달특성에 관한 연구)

  • 김기수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.285-293
    • /
    • 1998
  • This paper presents an experimental study on condensing heat transfer characteristics of R-22 alternative refrigerants, R-290 and R-410a on water sources heat pump. The apparatus mainly consisted of vapor pump condenser used to the test section evaporator manual expansion valve and measuring device. Test section constructed a smoothed tube of 10.07 mm ID and 12.7mm OD with a total length 6,300 mm was horizontal double pipe counterflow condenser. The refrigerants R-22, R-290 and R-410a were cooled by a coolant circulated in a surrounding annulus. Experimental range of mass velocities was changed from about 100 to 300 kg/($m^2$.s) and inlet quality 1.0 The credibility of experimental apparatus was 6 percent between heating capacity and cooling capacity added to compressor shaft power. The condensing heat transfer coefficients were increased with increasing mass velocity. However in case of R-290 they were more increasing than those of R-410a and R-22 Comparing the heat transfer coefficient between the experimental data and other's data the Cavallini-Zecchin's data was revealed to more similar prediction of author's experimental results on the average heat transfer coefficients.

  • PDF

Study on Condensation Heat Transfer Characteristics of Hydrocarbons Natural Refrigerants

  • Oh, Hoo-Kyu;Park, Seung-Jun;Park, Ki-Won;Roh, Geon-Sang;Jeong, Jae-Cheon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.10-17
    • /
    • 2001
  • This study investigated the condensation heat transfer coefficients of R-22, R-290 and R-600a inside horizontal tube. Heat transfer measurements were performed for smooth tube with inside diameter of 10.07 mm and outside diameter of 12.07 mm and inner grooved tube having 75 fins whose height is 0.25 mm. Condensation temperatures and mass velocity were ranged from 308K to 323 K and $51kg/m^2s$ to $250kg/m^2s$, respectively. The test results showed that the local condensation heat transfer coefficients increased as the mass flux increased, and also the effects of mass velocity on heat transfer coefficients of R-290 and R-600a were less than those of R-22. Average condensation heat transfer coefficients of natural refrigerants were superior to that of R-22. The present results had a good agreement with Cavallini-Zecchin's correlation for smooth and inner grooved tubes.

  • PDF

Boiling Heat Transfer Characteristics of R-290 in Horizontal Minichannel (수평미세관내 R-290의 비등열전달 특성)

  • Choi, Kwang-Il;Pamitran, A.S.;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.68-73
    • /
    • 2006
  • The present paper deals with an experimental study of boiling heat transfer characteristics of R-290, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method applied for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. The experiments were conducted with R-290 with purity of 99.99% at saturation temperature of 0 to $10^{\circ}C$. The range of mass flux is $50{\sim}250kg/m^2s$ and heat flux is $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increases with increasing mass flux and saturation temperature, wherein the effect of mass flux is higher than that of the saturation temperature, whereas the heat flux has a low effect on increasing heat transfer coefficient. The significant effect of mass flux on heat transfer coefficient is shown at high quality, the effect of heat flux on heat transfer coefficient at low quality shows a domination of nucleate boiling contribution. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. Zang et al.'s correlation(2004) gave the best prediction of heat transfer coefficient.

  • PDF