• Title/Summary/Keyword: R134a refrigerant

Search Result 184, Processing Time 0.026 seconds

Experimental Study on R-134a Evaporation Heat Transfer Characteristics in Plate and Shell Heat Exchanger (판각형 열교환기내의 R-134a 증발열전달 특성에 관한 실험적 연구)

  • Kim, Su-Jin;Park, Jae-Hong;Seo, Moo-Gyo;Kim, Young-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.248-253
    • /
    • 2001
  • An experiment was carried out to investigate the characteristics of the evaporation heat transfer for refrigerant R-134a flowing in a plate and shell heat exchanger. The data are useful in designing more compact and effective evaporators for various refrigeration and air conditioning systems. Two vertical counterflow channels were formed in the exchanger. The R-134a flows up in one channel exchanging heat with the hot water flowing down in the other channel. The effects of the average heat flux, mass flux, saturation temperature and vapor quality were examined in detail. The present data show that the evaporation heat transfer coefficient increases with the vapor quality. A rise in the refrigerant mass flux causes an increase in the $h_r$ value. A rise in the average imposed heat flux causes an increase in the $h_r$, value at the low quality. Finally, at a higer refrigerant saturation temperature the $h_r$, value is found to be lower.

  • PDF

An experimental study on nucleate boiling of ternary refrigerant R407C (삼중 혼합 냉매 R407C의 핵비등 열전달 특성에 관한 실험적 연구)

  • Kim, S.H.;Kwak, K.M.;Bai, C.H.;Chung, M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.276-283
    • /
    • 1997
  • The nucleate boiling heat transfer experiments are performed using a ternary refrigerant R407C which is a candidate of alternatives of HCFC 22. The boiling phenomena for R-32, R-125, and R-134a which are the constituent refrigerants of R407C are also investigated to give the foundation of theoretical research for the mixture component boiling. The nucleate boiling heat transfer coefficients of R407C is less than those of HCFC 22 which has the similar physical and transport properties. Since the experimental results show the deterioration of boiling heat transfer coefficients of ternary mixture refrigerants R407C, the boiling heat transfer coefficients of R407C cannot be obtained by the linear combination of boiling heat transfer coefficients from its constituent components R-32, R125, and R134a.

  • PDF

Influence of Refrigeration Oil on Evaporation Heat Transfer of R-134a in a Horizontal Micro-Fin Tube (냉동유가 수평 마이크로 핀관내 R-134a의 증발열전달에 미치는 영향)

  • 배상철;강태욱;김정훈;정찬영;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.140-150
    • /
    • 1996
  • CFC-12, which has been used most widely in automobile air conditioners and household refrigerators is scheduled to be phased out soon because of its high ozone depletion potential. Now HFC-134a is suggested as an alternative refrigerant for CFC-12. In this Study, we intended to investigate how PAG oil influence evaporation heat transfer and flow pattern, using R-134a and PAG oil influences evaporation heat transfer and flow pattern, using R-134a and PAG oil in the horizontal miro-fin evaporation tube. Experiments were conducted under the flowing est conditions : mass velocity 86-250kg/$m^2$s, heat flux 5-30 ㎾/$m^2$, oil concentration 0-21 wt.% and saturation temperature 5$^{\circ}C$. Local evaporation heat transfer coefficients were found to be higher at the top, side and bottom of the tube in this order. Average heat transfer coefficients turned out to increase with oil concentration increment up to 3 wt.% oil concentration, whereas heat transfer coefficients gradually decreased over 3 wt.% oil concentration, because of oil-rich liquid film was formed on the heat transfer surface. Flow patterns were rapidly transitioned to annular regimes up to 3 wt.% oil concentration. In case of pure refrigerant, measured heat transfer coefficients in the experiments were similar to those of Kandlikar's correlation.

  • PDF

The Condensation Heat Transfer of Alternative Refrigerants for R-22 in Small Diameter Tubes (세관내 R-22 대체냉매의 응축열전달에 관한 연구)

  • Son, Chang-Hyo;Jeong, Jin-Ho;O, Jong-Taek;O, Hu-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.180-186
    • /
    • 2001
  • The condensation heat transfer coefficients of pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube were investigated. The experiment apparatus consists of a refrigerant loop and a water loop. The main components of the refrigerant loop consist of a variable-speed pump, a mass flowmeter, an evaporator, and a condenser(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flowmeter. The condenser is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal copper tube of 3.38mm outer diameter and 1.77mm inner diameter. The length of test section is 1220mm. The refrigerant mass fluxes varied from 450 to 1050kg/(㎡$.$s) and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main results were summarized as follows ; in the case of single-phase flow, the heat transfer coefficients increase with increasing mass flux. The heat transfer coefficient of R-410A was higher than that of R-22 and R-134a, and the heat transfer for small diameter tubes were about 20% to 27% higher than those predicted by Gnielinski. In the case of two-phase flow, the heat transfer coefficients also increase with increasing mass flux and quality. The condensation heat transfer coefficient of R-410A was slightly higher than that of R-22 and R-134a. Most of correlations proposed in the large diameter tube showed significant deviations with experimental data except for the ranges of low quality and low mass flux.

Flow Boiling Heat Transfer Characteristics of R22 Alternative Refrigerants in a Horizontal Microfin Tube (R22 대체 냉매의 마이크로 핀관내 흐름 비등 열전달 특성)

  • 한재웅;김신종;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.692-700
    • /
    • 2001
  • Flow boiling heat transfer coefficients(HTCs) of R22, R134a, R407C, and R410A were measured experimentally for a horizontal plain and a microfin tube. Experimental apparatus was composed of 3 main parts: a refrigerant loop, a water loop and a water-glycol loop. The test section in th refrigerant loop was made of a copper tube of 9.52 mm outer diameter and 1 m length for both tubes. The refrigerant was heated by passing hot water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of $5^{\circ}C$ with mass fluxes of 100~300 kg/$m^2$s. Test results showed that at similar mass flux the flow boiling HTCs of R134a were similar to those of R22 for both plain and microfin tube. HTCs of R407C were similar to those of R22 for a plain tube but lower than those of R2 by 25~48% for a microfin tube. And HTCs of R410A were higher than those of R2 by 20~63% for a plain tube and were similar to those of R22 for a microfin tube. In general, HTCs of a microfin tube were 1.8~5.7 times higher than those of a plain tube.

  • PDF

Prediction of Nucleate Pool Boiling Heat Transfer Coefficients of Ternary Refrigerant R407C

  • Kwak, Kyung-Min;Bai, Cheol-Ho;Chung, Mo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.93-103
    • /
    • 1998
  • The nucleate boiling heat transfer experiments are performed using a ternary refrigerant R407C which is a candidate of alternatives of HCFC 22. The boiling phenomena of R-32, R-125 and R-134a which are the constituent refrigerants of R407C are also investigated. The nucleate boiling heat transfer coefficients of R407C are less than those of HCFC 22 which have the similar physical and transport properties. In our experimental pressure range, which is similar to the operational pressure of air conditioning system, the deterioration of boiling heat transfer coefficients of mixture refrigerant R407C does not appear for moderate wall superheat region. Since nucleate boiling heat transfer coefficients cannot be obtained from ideal mixing law of mixture, Thome's method was used to predict. To account for the heat flux effect and system pressure in Thome's method, the correcting factor, a(P.L1T), was introduced and obtained from experiments for ternary refrigerant R407C.

  • PDF

Flow Condensation Heat Transfer Coefficients of Pure Refrigerants (순수냉매의 흐름응축 열전달계수)

  • 김신종;송길홍;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.175-183
    • /
    • 2002
  • Flow Condensation heat transfer coefficients (HTCs) of Rl2, R22, R32, Rl23, Rl25, R134a, R142b were measured experimentally on a horizontal plain tube. The experi- mental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water-glycol loop. The test section in a refrigerant loop was made of a copper tube of 8.8 mm inner diameter and 1000 mm length respectively. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. All tests were performed at a filed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, 300 kg/$m^2$s. The experimental result showed that flow condensation HTCs increase as the quality, mass flux, and latent heat of condensation increase. At the same mass flux, the HTCs of R32 and R142b were higher than those of R22 by 35~45% and 7~14% respectively while HTCs of R134a and Rl23 were similar to those of R22. On the other hand, HTCs of Rl25 and Rl2 were lower than those of R22 by 28 ~30% and 15 ~25% respectively Finally, a new correlation for flow condensation HTCs was developed by modifying Dobson and Chato's correlation with the latent heat of condensation considered. The correlaton showed an average deviation of 13.1% for all pure fluids data indicating an excellent agreement.

Condensation Heat Transfer and Pressure Drop of R-134a in the Oblong Shell and Plate Heat Exchanger

  • Park Jae-Hong;Kim Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.158-167
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with a oblong shell and plate heat exchanger without oil in a refrigerant loop using R-134a. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient $h_r$ and frictional pressure drop ${\Delta}p_f$ of R-134a in a vertical oblong shell and plate heat exchanger. Four vertical counter flow channels were formed in the oblong shell and plate heat exchanger by four plates having a corrugated sinusoid shape of a $45^{\circ}$ chevron angle. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the condensation heat transfer coefficients and pressure drops increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the $h_r\;and\;{\Delta}p_f$. Also, a rise in the average heat flux causes an increase in the $h_r$. But the effect of the average heat flux does not show significant effect on the ${\Delta}p_f$. On the other hand, at a higher saturation temperature, both the $h_r\;and\;{\Delta}p_f$. found to be lower. Based on the present data, the empirical correlations are provided in terms of the Nusselt number and friction factor.

Numerical Study on Tip Clearance Effect on Performance Characteristics of a Centrifugal Compressor for a R134a Turbo-Chiller (R134a 터보냉동기용 원심압축기의 익단간극이 성능특성에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.38-44
    • /
    • 2004
  • In this study, the overall performance and the effect of the tip leakage flow of the centrifugal compressor with a refrigerant HFC-l34a were numerically studied using CFX-TASCflow. To study the effect of the tip leakage flow, the numerical study of the overall performance of HFC-l34a centrifugal compressor with a cascade diffuser was preceded and compared with the experimental result. Six different tip clearances were used to consider the influence of the tip clearance on the performance. The tip leakage flow was illustrated for qualitative discussion. The results obtained in this study can be applied to the determination of the cold clearance.

External Condensation Heat Transfer Coefficients of R1234yf (신냉매 R1234yf의 외부 응축 열전달계수)

  • Park, Ki-Jung;Lee, Cheol-Hee;Kang, Dong-Gyu;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.345-352
    • /
    • 2010
  • In this study, external condensation heat transfer coefficients(HTCs) of R134a and R1234yf are measured on a plain, low fin, and Turbo-C tubes at the saturated vapor temperature of $39^{\circ}C$ with the wall subcooling of $3{\sim}8^{\circ}C$. R1234yf is a new alternative refrigerant of low greenhouse warming potential for replacing R134a which is one of the greenhouse gases controlled by Kyoto protocol and is used extensively in mobile air-conditioners. Test results show that the external condensation HTCs of R1234yf are very similar to those of R134a for all three surfaces tested. For the application of condensation heat transfer correlations to the design of condensers charged with R1234yf, thorough property measurements are needed for R1234yf in the near future.