• Title/Summary/Keyword: R-wave

Search Result 1,100, Processing Time 0.034 seconds

The Effect of Curvature Radius and Material of Diaphragm on the Valve Opening Time in Diaphragm Type S/R Valve (S/R 밸브에서 격막의 곡률반경과 재료가 밸브 개구시간에 미치는 영향)

  • Cheon, Heung-Kyun;Hwang, Jae-Gun;Cho, Tae-Seok;Kwon, Young-Doo;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2961-2966
    • /
    • 2007
  • When the pressure at the weak spot established at a certain part of a high pressure vessel or piping system exceeds a design pressure, this weak spot is burst, and the pressurized gas emitted through the weak spot will cause a compression wave system. In this connection, in the present study, an experimental study by using a conventional shock tube facility is performed to estimate the effects of the material of diaphragm, curvature radius and thickness of materials on the valve opening time in diaphragm. Pressure sensor having 500kHz in natural frequency is installed at 35mm downstream of the rupture diaphragm to measure the static pressure history of propagating and being accumulated compression wave. 4 kinds of materials are used as diaphragm that is aluminium, copper, stainless steel and zinc. The diaphragm radii of curvature R are ${\infty}$, 120mm and 60, respectively. And the depth for $90^{\circ}$ groove is 0.04mm. It is found that the smaller the tensile strength and elongation of the rupture diaphragm is, the smaller the radius of curvature of the rupture diaphragm is, and for the same conditions the thinner the thickness of the rupture diaphragm is, the shorter the valve opening time becomes. Also, the tensile strength, elongation and the radius of curvature of the rupture diaphragm for the same conditions are smaller, the maximum pressure rise caused by the coalescences of the compression wave is smaller. Finally the pressure ratio is higher, the valve opening time is shortened and gradient of pressure increment is more steepen.

  • PDF

A Study on the Abnormal and Fault Reproduction Method for Smart Monitoring of Thrust Bearing in Wave Power Generation System (파력발전 시스템 쓰러스트 베어링의 스마트 모니터링을 위한 이상 및 고장 운용 재현 방법에 관한 연구)

  • Oh, Jaewon;Min, Cheonhong;Sung, Kiyoung;Kang, Kwangu;Noh, Hyon-Jeong;Kim, Taewook;Cho, Sugil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.835-842
    • /
    • 2020
  • This paper considers a method of reproducing abnormal and fault operation for smart monitoring of thrust bearing used in wave power generation system. In order to develop smart monitoring technology, abnormal and failure data of actual equipment are required. However, it is impossible to artificially break down the actual equipment in operation due to safety and cost. To tackle this problem, a test bed that can secure data through reproduction of a faulty operating environment should be developed. Therefore, in this study, test bed that can reproduce each situation was developed and the operation result was analysis after identifying the situation to be reproduced through the failure factor analysis of the thrust bearing.

A Study on Calibration of Underestimated Wave Heights Measured by Wave and Tide Gauge (WTG) (저평가된 수압식 파고계(WTG) 관측 파고값 보정방안 연구)

  • Jeong, Weon Mu;Chang, Yeon S.;Oh, Sang-Ho;Baek, Won Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.296-306
    • /
    • 2020
  • It has been reported that the wave heights measured by Wave and Tide gauges (WTG) have been underestimated, and thus it is important to improve its measuring accuracy for enhancing estimation of harbor tranquility. In this study, the significant wave heights from WTG were calibrated using measured data from AWAC and Waverider buoys moored at the same four locations with the WTG. It was observed that the product of significant wave height and peak wave period, HT, was not underestimated but linearly proportional between the measurements by two instruments. This linearity was applied to develop 3rd order polynomial functions that best represented the relationship between HT and significant wave heights measured by WTG. These functions were then applied to calibrate the WTG significant wave heights that were lower than 0.7 m, the critical value established for the low waves in this study. The results showed that the linearity between the AWAC (or Waverider buoy) and calibrated wave heights were improved, and the magnitude of underestimated WTG wave heights were increased to be more realistic. The results of this study are expected to be effectively applied for other data sets obtained by WTG only, to increase the observation accuracy of WTG and to improve the estimation of harbor tranquility.

Changes of the Electrocardiogram and Blood Picture of Frogs in Four Seasons (개구리 심전도(EKG) 및 혈액상의 계절에 따른 변화)

  • Rhee, Jung-Moo;Bae, Sung-Ho;Shin, Hyun-Chan;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.8 no.2
    • /
    • pp.33-44
    • /
    • 1974
  • The electrocardiogram of frogs were obtained in winter (January), spring (April), summer (July) and autumn (September and November). Electrocardiograms were recorded applying electrodes to the atria, ventricle and apex of the heart by unipolar or bipolar leads. V wave was recorded prior to P wave, for the presence of the sinus venosus which controls the automaticity of the frog heart, in four seasons. Regardless of the leads or the position of the electrodes P wave was diphasic and wide. According to the rise of temperature the rate of heart beat was increased, and V-P and P-R interval were shortened. Two regression line between R-R interval and both V-P interval and P-R interval were drawn. These were calculated as V-P interval=1 0.276R-R $interva1+0.067{\pm}0.15$ (sec.) and P-R interval=0.179R-R $interva1+0.155{\pm}0.1$ (sec). From these calculation the larger gradient of V-P interval than P-R interval was suggestive that the heart rate is more dependent on the changes of V-P interval than that of P-R interval. Changes of the heart rate were also measured in four seasons and artificial temperatures. Two regression lines between the heart rate (H.H.) and both seasonal temperature (T) and artificial temperature, were drawn. These two lines were calculated as H.R.=20+3.71 (T-10) and H.R.=32+1.425 T respectively. From two gradients of the above equations it is considered that the changes of the heart rate in artificial temperature were milder than that in seasonal temperature. The number of RBC and WBC of frogs were measured in four seasons and a tendency of the changes was observed according to the seasonal variation.

  • PDF

A Study on the Methods to Improve High-Wave Reproducibility during Typhoon (태풍 내습 시의 고파 재현성 개선방안 연구)

  • Jong-Dai, Back;Kyong-Ho, Ryu;Jong-In, Lee;Weon-Mu, Jeong;Yeon-S., Chang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.177-187
    • /
    • 2022
  • This study estimates the design wave in the event of a typhoon attack at Busan new port using the wind field, the revised shallow water design wave estimation method proposed by the Ministry of Oceans and Fisheries in 2020, and proposed a reliable method of calculating the shallow water design through verification with the wave observation data. As a result of estimating typhoon wave using the wind field and SWAN numerical model, which are commonly used in the field work, for typhoon that affected Busan new port, it was found that reproducibility was not good except typhoons KONG-REY(1825) and MAYSAK(2009). In particular, in the case of typhoon MAEMI(0314), which had the greatest impact on Busan new port, the maximum significant wave height was estimated to be about 35.0% smaller than that of the observed wave data. Therefore, a plan to improve the reproducibility of typhoon wave was reviewed by applying the method of correcting the wind field and the method of using the Boussinesq equation numerical model, respectively. As a result of the review, it was found that the reproducibility of the wind field was not good as before when the wind field correction. However as a method of linking wind field data, SWAN model results, and Boussinesq numerical model, typhoon wave was estimated during typhoon MAEMI(0314), and the maximum significant wave was similar to the wave observations, so it was reviewed to have good reproducibility.

Prediction of the Fundamental Mode Lamb Wave Reflection from a Crack-Like Discontinuity Using Eigen-Mode Expansion

  • Park, Jae-Seok;Jang, Chang-Heui;Lee, Jong-Po
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.194-199
    • /
    • 2010
  • Based on the idea of eigen-mode expansion, a method to analyze the reflection of Lamb wave from a finite vertical discontinuity of plate is theoretically derived and verified by experiment. The theoretical prediction is in good agreement with the experimental result, and this strongly suggests that eigen-mode expansion method could be used for solution of inverse scattering problem for ultrasonic testing using Lamb wave.

A Convergence Test of the Full-potential Linearized Augmented Plane Wave (FLAPW) Method: Ferromagnetic Bulk BCC Fe

  • Seo, Seung-Woo;Song, You-Young;Gul, Rahman;Kim, In-Gee;Weinert, M.;Freeman, A.J.
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.137-143
    • /
    • 2009
  • The convergence behavior of the all-electron full-potential linearized augmented plane-wave (FLAPW) method with the explicit orthogonalization (XO) scheme is tested on ferromagnetic bulk body-centered-cubic Fe. Applying a commonly used criterion relating the plane-wave and angular momentum cutoffs, $l_{max}\;=\;R_{MT}K_{max}$, where $R_{MT}$ is the muffin-tin (MT) sphere radius and $K_{max}$ is the plane-wave cutoff for the basis - the total energy is converged and stable for $K_{max}R_{MT}$ = 10. The total energy convergence dependence on the star-function cutoff, $G_{max}$, is minimal and so a $G_{max}$ of 3$K_{max}$ or a large enough $G_{max}$ is a reasonable choice. We demonstrate that the convergence with respect to $l_{max}$ or a fixed large enough $G_{max}\;and\;K_{max}$ are independent, and that $K_{max}$ provides a better measure of the convergence than $R_{MT}K_{max}$. The dependence of the total energy on $R_{MT}$ is shown to be small if the core states are treated equivalently, and that the XO scheme is able to treat systems with significantly smaller $R_{MT}$ than the standard LAPW method. For converged systems, the calculated lattice parameter, bulk modulus, and magnetic moments are in excellent agreement with the experimental values.

A Dynamic OD Construction Methodology using Vehicle Trajectory in Ideal C&R Communication Environment (이상적 C&R 환경에서의 궤적자료를 이용한 동적 OD 구축에 관한 연구)

  • Lee, Jungwoo;Choi, Keechoo;Park, Sangwook;Son, Bumsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.355-361
    • /
    • 2011
  • In order to properly evaluate ITS services exposed in SMART Highway project, a confident dynamic origin-destination (OD) is inevitably needed. This paper used WAVE communication information as a part of call and response (C&R) communication which constitutes core part of the technology for constructing OD. This information includes node information and vehicle information (e.g., latitude and longitude) as well as trajectory data and sample path volume date calculated using node information and vehicle information. A procedure developed to construct a dynamic OD and to validate OD is consist of 1) making toy network and one-hour 00 (random distribution), 2) collecting link information and vehicle information, 3) constructing five-minute OD, and 4) validating estimated OD result using traffic volume and travel time simultaneously. The constructed OD is about 84.79% correct within less than 20% error range for 15min traffic volume, and about 85.42%, within less than 20% error rate of 15 min travel time. Some limitations and future research agenda have also been discussed.

Median and ulnar F-wave inversion as a supplementary criterion for diagnosis of carpal tunnel syndrome

  • Kim, Yoohwan;Jang, Jae-Hong;Cho, Charles S.;Kim, Byung-Jo
    • Annals of Clinical Neurophysiology
    • /
    • v.19 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • Background: Median F-wave latencies are physiologically shorter than ulnar latencies, but they are often longer relative to ulnar latencies in carpal tunnel syndrome (CTS). This study aimed to investigate the value of absolute F-waves and relative latency changes compared to ulnar latencies in the diagnosis of CTS. Methods: F-wave latencies of median and ulnar nerves in 339 hands from 339 patients with CTS and 60 hands from 60 control subjects were investigated. Mean F-wave minimal latencies of median and ulnar nerves were compared between groups. Patients were further divided into subgroups based on Canterbury grading and then analyzed using F-wave latency differences (FWLD) and F-wave ratio (FWR). Results: Of 339 hands in the CTS group, 236 hands exhibited F-wave inversion based on the FWLD criterion and 277 hands had F-wave inversion based on the FWR criterion. F-wave inversion had a sensitivity of 81.7% using the FWR criterion to diagnose CTS. The mean FWLD and FWR were significantly greater in all patient subgroups compared to the control group (p < 0.001). In addition, mean FWLD and FWR showed significant correlations (r = -0.683 and r = 0.674, respectively, p < 0.001) with disease severity. Conclusions: F-wave studies are effective supplementary diagnostic tools comparing to other standard electrophysiologic criteria for screening patients with CTS.

Active-Sensing Lamb Wave Propagations for Damage Identification in Honeycomb Aluminum Panels

  • Flynn, Eric B.;Swartz, R.Andrew;Backman, Daniel E.;Park, Gyu-Hae;Farrar, Charles R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.269-282
    • /
    • 2009
  • This paper presents a novel approach for Lamb wave based structural health monitoring(SHM) in honeycomb aluminum panels. In this study, a suite of three signal processing algorithms are employed to improve the damage detection capability. The signal processing algorithms used include wavelet attenuation, correlation coefficients of power density spectra, and triangulation of reflected waves. Piezoelectric transducers are utilized as both sensors and actuators for Lamb wave propagation. These SHM algorithms are built into a MatLab interface that integrates and automates the hardware and software operations and displays the results for each algorithm to the analyst for side by side comparison. The effectiveness of each of these signal processing algorithms for SHM in honeycomb aluminum panels under a variety of damage conditions is then demonstrated.