• 제목/요약/키워드: R-gene

검색결과 3,811건 처리시간 0.029초

Genetic Differentiation among the Mitochondrial ND2 Gene and $tRNA^{Trp}$ Gene Sequences of Genus Rana (Anura) in Korea

  • Lee, Hyuk;Yang, Suh-Yung;Lee, Hei-Yung
    • Animal cells and systems
    • /
    • 제4권1호
    • /
    • pp.31-37
    • /
    • 2000
  • The genetic variations among six species of Rana from Korea (R. nigro-maculata, R. piancyi, R. dybowskii, R. sp, R. rugosa type A, B and R. amurensis) were investigated using 499 bases of mitochondrial DNA sequences for ND2 (NADH dehydrogenase subunit 2) gene and $tRNA^{Trp}$ gene. Partial sequences of ND2 gene (427 bp) and full sequences of $tRNA^{Trp}$ gene (73 bp) were identified. The level of sequence divergences ranged from 0.2 to 5.2% within species and 4.9-28.0% among 6 species of the genus Rana. The $tRNA^{Trp}$ gene of the genus Rana was composed of 77 nucleotides which showed a two dimensional "cloverleaf" structure. The secondary structure of $tRNA^{Trp}$ was not found compensatory changes which could potentially confound phylogenetic inference. In the neighborjoining tree, brown frogs were clustered first with the level of sequence divergence of 13.20% between R. amurensis and R. dybowskii, and 9% between R. dybowskii and R. sp. supported by 99% bootstrap iterations, respectively. R. nigromaculata and R. plancyi were clustered into another group with 5.1% divergence supported by 100% bootstrap iteration. R. rugosa A 8nd B types were grouped by 4.9% divergence and clustered into the last group with other two groups with 100% bootstrap iterations.

  • PDF

New Aspects of Gene-for-Gene Interactions for Disease Resistance in Plant

  • Nam, Jaesung
    • The Plant Pathology Journal
    • /
    • 제17권2호
    • /
    • pp.83-87
    • /
    • 2001
  • Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products. Recent studies arising from molecular cloning of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on mode of action of gene-for-gene interaction. Specially, members of the NBS-LRR class of R genes encoding proteins containing a nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs) confer resistance to very different types of phytopathogens, such as bacteria, fungi, oomycetes, viruses, nematodes and aphids. This article reviewed the molecular events that occur up-stream of defense response pathway, specially, bacterial avr gene protein recognition mediated by NBS-LRR type R gene product in plant based on current research results of well studied model plants.

  • PDF

옥수수 종피의 안토시아닌 합성을 조절하는 R 유전자 구성요소의 구명 (Identification of the Maize R Gene Component Responsible for the Anthocyanin Biosynthesis of Kernel Pericarp)

  • 김화영
    • 한국육종학회지
    • /
    • 제42권1호
    • /
    • pp.50-55
    • /
    • 2010
  • 옥수수 R 유전자의 대립인자 중 하나인 R-r:standard (R-r:std)는 종자 호분층의 안토시아닌 합성을 조절하는 S subcomplex와 종자 이외 식물체부위의 안토시아닌 합성을 조절하는 P component로 구성되어 있으며, S subcomplex는 S1 및 S2 component로 구성되어 있다. R 유전자의 대립인자 중 일부는 Pl 유전자가 존재할 경우 종피의 안토시아닌 합성을 유도한다. 따라서 Pl 유전자가 존재할 경우 옥수수 종피의 안토시아닌 합성을 유도하는 R 유전자의 구성요소를 구명하고자 종피의 안토시아닌 합성에 미치는 서로 다른 R 인자들의 효과를 분석하였다. R-ch와 r-ch 인자는 유사한 정도의 착색 효과를 보였으며, R-r:Ecuador (R-r:Ec)는 이들보다 짙은 착색효과를 나타내었다. S subcomplex의 기능은 상실하였으나 정상적인 P component를 보유하고 있는 것으로 추정되는 r-ch는 Pl 유전자가 존재할 경우 종피의 색소합성 기능을 유지하고 있으나, S subcomplex의 기능은 정상이나 P component의 기능은 잃어버린 것으로 추정되는 R-r:Ec 유래 인자 R-g:g1111는 Pl 유전자가 존재할 경우에도 종피가 착색되지 않았다. 더욱이 R-ch와 r-ch 인자의 PCR 분석 결과, R-ch는 P와 S1 component를 보유하고 있으나, r-ch는 S1을 보유하고 있지 않는 것으로 나타났다. 따라서 R 유전자의 구성요소 중 P component가 종피의 안토시아닌 합성에 관여하는 구성요소로 추정되었다.

Mucor racemosus 18S rRNA gene의 3'말단 염기해독 (3'-terminal sequence of mucor racemosus 18S rRNA gene)

  • 지근억;김진경
    • 미생물학회지
    • /
    • 제29권5호
    • /
    • pp.284-289
    • /
    • 1991
  • the nucleotide sequence of the 3' terminal 568 bases of the 18S rRNA gene from Mucor racemosus was determined. The 3' end of the structural gene was identified by comparison with the published sequence for the Saccharomyces cerevisiae gene. The M. racemosus gene was found to share 83.8% homology with that of S. cerevisiae and 71-81% homology with those of human, mouse, maize, Xenopus laevis and Tetrahymena thermophila. The known methylation sites in X. laevis and human were also highly conserved in M. racemosus and located within most conserved regions of 18S RNA gene throughout evolution.

  • PDF

Ectopic Expression of Apple MbR7 Gene Induced Enhanced Resistance to Transgenic Arabidopsis Plant Against a Virulent Pathogen

  • Lee, Soo-Yeon;Choi, Yeon-Ju;Ha, Young-Mie;Lee, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.130-137
    • /
    • 2007
  • A disease resistance related gene, MbR7, was identified in the wild apple species, Malus baccata. The MbR7 gene has a single open reading frame (ORF) of 3,288 nucleotides potentially encoding a 1,095-amino acid protein. Its deduced amino acid sequence resembles the N protein of tobacco and the NL27 gene of potato and has several motifs characteristic of a TIR-NBS-LRR R gene subclass. Ectopic expression of MbR7 in Arabidopsis enhanced the resistance against a virulent pathogen, Pseudomonas syringae pv. tomato DC3000. Microarray analysis confirmed the induction of defense-related gene expression in 35S::MbR7 heterologous Arabidopsis plants, indicating that the MbR7 gene likely activates a downstream resistance pathway without interaction with pathogens. Our results suggest that MbR7 can be a potential target gene in developing a new disease-resistant apple variety.

Vibrio 속 16S rRNA 유전자 염기서열의 이질성 분석 (Heterogeneity Analysis of the 16S rRNA Gene Sequences of the Genus Vibrio)

  • 기장서
    • 미생물학회지
    • /
    • 제45권4호
    • /
    • pp.430-434
    • /
    • 2009
  • 세균 16S rRNA 유전자 염기서열은 분자계통분류, 진화역사 규명, 미생물 검출 등 다양한 목적으로 이용되어 왔다. 세균 제놈(genome)은 multiple rRNA 오페론을 갖고 있으며, 이들 유전자 염기서열은 일부 변이가 있는 것으로 알려져 있다. 본 연구에서는 Vibrio 속의 16S rRNA 유전자 염기서열을 이용하여 세포 내 16S rRNA의 이질성을 규명하였다. 분석은 GenBank 자료 중에서 제놈 염기서열 annotation이 완료된 V. cholerae, V. harveyi, V. parahaemolyticus, V. splendidus, V. vulnificus를 이용하여 실시하였다. Vibrio 속은 1번 염색체에 7~10개의 16S rRNA 유전자 copy를 갖고 있으며, 이들의 세포 내 유전자 변이는 0.9% 이하 상이성(99.1%이상 DNA 상동성)을 보였다. 2번 염색체에서는 16S rRNA 유전자가 1개 이하로 존재하였다. 유전체내 16S rRNA 유전형은 최소 5개(V. vulnificus #CMCP6)에서 최대 8개(V. parahaemolyticus #RIMD 2210633, V. harveyi #ATCC BAA-1116)로 조사되었다. 본 결과는 Vibrio 속의 16S rRNA 유전자 염기서열이 높은 이질성을 갖는 것을 제시해 준다.

옥수수의 색소 발현에 관련된 조직 특이성 조절유전자 R locus에 관하여 (Tissue Specific Gene Regulation of The Anthocyanin Synthesis Regulator Gene R in Maize)

  • 임용표
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.323-347
    • /
    • 1987
  • The R locus of maize in one of several genes that regulate the anthocyanin pigments throughout the body of the plant and seed. The R gene product may regulate pigment deposition by controlling the expression of the flavonoid biosynthetic gene pathway in a tissue-specific manner. To understand the basis for tissue specific regulation and allelic variation at R, the molecular study has been done by cloning a portion of the R complex by transposon tagging with Ac. R specific probe were cloned from the R-nj mutant induced by Ac insertion mutagenesis. From southern analysis of R-r complex using the R-nj probe, the structure of R-r was proposed that R-r containes the three elements, (P)(Q)(S). These elements may organize as the inversion triplication model which (S) sequence was inverted in relation to (P) and (Q). The R-sc derivated from R-mb or R-nj was cloned with R-nj probe, and molecular genetical data showed that R-sc containes tissue specific and tissue nonspecific area, and the sequencing of R-sc are progressed now.

  • PDF

Assessment of Risks and Benefits of Using Antibiotics Resistance Genes in Mesenchymal Stem Cell-Based Ex-Vivo Therapy

  • Narayan Bashyal;Young Jun Lee;Jin-Hwa Jung;Min Gyeong Kim;Kwang-Wook Lee;Woo Sup Hwang;Sung-Soo Kim;Da-Young Chang;Haeyoung, Suh-Kim
    • International Journal of Stem Cells
    • /
    • 제16권4호
    • /
    • pp.438-447
    • /
    • 2023
  • Recently, ex-vivo gene therapy has emerged as a promising approach to enhance the therapeutic potential of mesenchymal stem cells (MSCs) by introducing functional genes in vitro. Here, we explored the need of using selection markers to increase the gene delivery efficiency and evaluated the potential risks associated with their use in the manufacturing process. We used MSCs/CD that carry the cytosine deaminase gene (CD) as a therapeutic gene and a puromycin resistance gene (PuroR) as a selection marker. We evaluated the correlation between the therapeutic efficacy and the purity of therapeutic MSCs/CD by examining their anti-cancer effect on co-cultured U87/GFP cells. To simulate in vivo horizontal transfer of the PuroR gene in vivo, we generated a puromycin-resistant E. coli (E. coli/PuroR) by introducing the PuroR gene and assessed its responsiveness to various antibiotics. We found that the anti-cancer effect of MSCs/CD was directly proportional to their purity, suggesting the crucial role of the PuroR gene in eliminating impure unmodified MSCs and enhancing the purity of MSCs/CD during the manufacturing process. Additionally, we found that clinically available antibiotics were effective in inhibiting the growth of hypothetical microorganism, E. coli/PuroR. In summary, our study highlights the potential benefits of using the PuroR gene as a selection marker to enhance the purity and efficacy of therapeutic cells in MSC-based gene therapy. Furthermore, our study suggests that the potential risk of horizontal transfer of antibiotics resistance genes in vivo can be effectively managed by clinically available antibiotics.

A Novel Nucleic Lateral Flow Assay for Screening phaR-Containing Bacillus spp.

  • Wint, Nay Yee;Han, Khine Kyi;Yamprayoonswat, Wariya;Ruangsuj, Pattarawan;Mangmool, Supachoke;Promptmas, Chamras;Yasawong, Montri
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.123-129
    • /
    • 2021
  • Polyhydroxyalkanoate (PHA) synthase is a key enzyme for PHA production in microorganisms. The class IV PHA synthase is composed of two subunits: PhaC and PhaR. The PhaR subunit, which encodes the phaR gene, is only present in class IV PHA synthases. Therefore, the phaR gene is used as a biomarker for bacteria that contain a class IV PHA synthase, such as some Bacillus spp. The phaR gene was developed to screen phaR-containing Bacillus spp. The phaR screening method involved two steps: phaR gene amplification by PCR and phaR amplicon detection using a DNA lateral flow assay. The screening method has a high specificity for phaR-containing Bacillus spp. The lowest amount of genomic DNA of B. thuringiensis ATCC 10792 that the phaR screening method could detect was 10 pg. This novel screening method improves the specificity and sensitivity of phaR gene screening and reduces the time and cost of the screening process, which could enhance the opportunity to discover good candidate PHA producers. Nevertheless, the screening method can certainly be used as a tool to screen phaR-containing Bacillus spp. from environmental samples.

Correlation between Expression Level of Gene and Codon Usage

  • Hwang, Da-Jung;Han, Joon-Hee;Raghava, G P S
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.138-149
    • /
    • 2004
  • In this study, we analyzed the gene expression data of Saccharomyces cerevisiae obtained from Holstege et al. 1998 to understand the relationship between expression level and nucleotide sequence of a gene. First, the correlation between gene expression and percent composition of each type of nucleotide was computed. It was observed that nucleotide 'G' and 'C' show positive correlation (r ${\geq}$ 0.15), 'A' shows negative correlation (r ${\approx}$ -0.21) and 'T' shows no correlation (r ${\approx}$ 0.00) with gene expression. It was also found that 'G+C' rich genes express more in comparison to 'A+T' rich genes. We observed the inverse correlation between composition of a nucleotide at genome level and level of gene expression. Then we computed the correlation between dinucleotides (e.g. AA, AT, GC) composition and gene expression and observed a wide variation in correlation (from r = -0.45 for AT to r = 0.35 for GT). The dinucleotides which contain 'T' have wide range of correlation with gene expression. For example, GT and CT have high positive correlation and AT have high negative correlation. We also computed the correlation between trinucleotides (or codon) composition and gene expression and again observed wide range of correlation (from r = -0.45 for ATA r = 0.45 for GGT). However, the major codons of a large number of amino acids show positive correlation with expression level, but there are a few amino acids whose major codons show negative correlation with expression level. These observations clearly indic ate the relationship between nucleotides composition and expression level. We also demonstrate that codon composition can be used to predict the expression of gene in a given condition. Software has been developed for calculating correlation between expression of gene and codon usage.

  • PDF