• Title/Summary/Keyword: R genes

Search Result 1,779, Processing Time 0.034 seconds

Classification and Expression Profiling of Putative R2R3 MYB Genes in Rice

  • Kim, Bong-Gyu;Ko, Jae-Hyung;Min, Shin-Young;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • MYB genes, comprising group of related genes found in animal, plant, and fungal genomes, encode common DNA-binding domains composed of one to four repeat motifs. MYB genes containing two repeats (R2R3) constitute largest MYB gene family in plants. R2R3 MYB genes play important roles in regulation of secondary metabolism, control of cell shape, disease resistance, and hormone response. Eight-four R2R3 MYB genes were retrieved from rice genome for functional characterization of MYB genes. Analysis of MYB domains revealed each MYB domain contains three ${\alpha}$-helices with regularly spaced tryptophan residues. R2R3 MYB genes were divided into four subfamilies based on phylogenic analysis result. Real-time PCR analysis of 34 MYB genes revealed 12 MYB genes were highly expressed in seeds than in leaves, whereas 4 genes were highly expressed in leaves.

Expression of colSR Genes Increased in the rpf Mutants of Xanthomonas oryzae pv. oryzae KACC10859

  • Noh, Young-Hee;Kim, Sun-Young;Han, Jong-Woo;Seo, Young-Su;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.304-309
    • /
    • 2014
  • The rpf genes and $colS_{XOO1207}/colR_{XOO1208}$ were known to require for virulence of Xanthomonas oryzae pv. oryzae (Xoo). In Xoo KACC10331 genome, two more colS/colR genes, $colS_{XOO3534}$ (raxH)/$colR_{XOO3535}$ (raxR) and $colS_{XOO3762}/colR_{XOO3763}$ were annotated. The $colS_{XOO3534}/colR_{XOO3535}$ were known to control AvrXa21 activity and functions of $colS_{XOO3762}/colR_{XOO3763}$ were unknown in Xoo. To characterize the relationship between rpf and colS/colR genes, expression of colS/colR genes in Rpf mutants of Xoo were analyzed with quantitative reverse transcription PCR (qRT-PCR). Expressions of all three colS/colR genes increased in the rpfF mutant in which DSF synthesis is defective. Expression of $colS_{XOO1207}/col-R_{XOO1208}$, $colS_{XOO3534}/colR_{XOO3535}$ and $colS_{XOO3762}/colR_{XOO3763}$ increased 2, 2-7, 3-13 folds respectively. Expression of $colS_{XOO3534}$ and $colS_{XOO3762}$ also increased 2-4 folds in the rpfG mutant in which the signal from DSF is no longer transferred to down-stream. Expression of the other colS/colR genes was not significantly changed in the rpfG mutant compared to the wild type. Since RpfF and RpfG are responsible for DSF synthesis and signal transfer from DSF to down-stream to regulate virulence gene expression, these results suggest that the DSF and DSF-mediated signal regulate negatively three colS/colR genes in Xoo.

Phylogenetic Relationships among Allium subg. Rhizirideum Species Based on the Molecular Variation of 5S rRNA Genes

  • Do, Geum-Sook;Seo, Bong-Bo
    • Animal cells and systems
    • /
    • v.4 no.1
    • /
    • pp.77-85
    • /
    • 2000
  • This study has demonstrated the molecular variation of 5S rRNA genes in 15 Allium subgenus Rhizirideum and 1 Allium subg. Allium. For cloning of the 5S rRNA genes, PCR products were obtained from amplification with oligonucleotide primers which were derived from the conserved coding region of 5S rRNA genes. These amplified PCR products were cloned and identified by FISH and sequence analysis. The 5S rRNA loci were primarily located on chromosomes 5 and/or 7 in diploid species and various chromosomes in alloploid species. The size of the coding region of 5S rRNA genes was 120 bp in all the species and the sequences were highly conserved within Allium species. The sizes of nontranscribed spacer (NTS) region were varied from 194 bp (A. dektiude-fustykisum, 2n=16) to 483 bp (A. sativum). Two kinds of NTS regions were observed in A. victorialis var. platyphyllum a diploid, A. wakegi an amphihaploid, A. sacculiferum, A. grayi, A. deltoide-fistulosum and A. wenescens all allotetraploids, while most diploid species showed only one NTS region. The species containing two components of NTS region were grouped with different diploid species in a phylogenetic tree analysis using the sequences of 5S rRNA genes and adjacent non-coding regions.

  • PDF

Detection of plcR-papR Genes by PCR in Identifying Enterotoxin Genes-Harboring Bacillus cereus Strains (장독소 유전자 함유 Bacillus cereus 확인을 위한 독소 전사 조절 유전자 plcR-papR의 PCR 검출법)

  • Yun, Suk-Hyun;Kim, Yong-Sang;So, Soon-Ku;Jeong, Do-Yeon;Hahn, Kum-Su;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.425-429
    • /
    • 2009
  • Identification of virulent Bacillus cereus strains was examined by PCR using primers specific for the detection of plcR-papR, which encode regulatory proteins controlling the transcription of virulence factors in B. cereus. Total 96 strains of B. cereus that carried at least one of diarrheal toxin genes including hblACD, nheABC, and cytK showed all positive PCR products, while other 48 Bacillus strains that lacked the toxin genes were plcRpapR-negative. This PCR method targeting the plcR-papR genes appears to be simple and effective in identifying the enterotoxin genes-harboring B. cereus strains.

Regulation of Phenol Metabolism in Ralstonia eutropha JMP134

  • Kim Youngjun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.27-30
    • /
    • 2002
  • Ralstonia eutrupha JMP134 is a well-known soil bacterium which can metabolite diverse aromatic compounds and xenobiotics, such as phenol, 2,4-dichlorophenoxy acetic acid (2, 4-D), and trichloroethylene (TCE), etc. Phenol is degraded through chromosomally encoded phenol degradation pathway. Phenol is first metabolized into catechol by a multicomponent phenol hydroxylase, which is further metabolized to TCA cycle intermediates via a meta-cleavage pathway. The nucleotide sequences of the genes for the phenol hydroxylase have previously been determined, and found to composed of eight genes phlKLMNOPRX in an operon structure. The phlR, whose gene product is a NtrC-like transcriptional activator, was found to be located at the internal region of the structural genes, which is not the case in most bacteria where the regulatory genes lie near the structural genes. In addition to this regulatory gene, we found other regulatory genes, the phlA and phlR2, downstream of the phlX. These genes were found to be overlapped and hence likely to be co-transcribed. The protein similarity analysis has revealed that the PhlA belongs to the GntR family, which are known to be negative regulators, whereas the PhlR2 shares high homology with the NtrC-type family of transcriptional activators like the PhlR. Disruption of the phlA by insertional mutation has led to the constitutive expression of the activity of phenol hydroxylase in JMP134, indicating that PhlA is a negative regulator. Possible regulatory mechanisms of phenol metabolism in R. eutropha JMP134 has been discussed.

  • PDF

Identification of a Regulatory Region within the luxR Structural Gene in a Marine Symbiotic Bacterium, Vibrio fischeri

  • Choi, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.176-182
    • /
    • 1994
  • The light-organ symbiont of pine cone fish, Vibrio fischeri, senses its presence in the host and responds to environmental changes by differentially expressing its symbiosis-related luminescence genes. The V. fischeri luminescence genes are activated by LuxR protein in the presence of an autoinducer. In an effort to elucidate the mechanism of regulation of luxR, a plasmid containing luxR was mutagenized in vitro with hydroxylamine and a luxR mutant plasmid was isolated by its ability to activate luminescence genes cloned in E. coli in the absence of the autoinducer. The specific base change identified by DNA sequencing was only single base transition at +78 from the transcriptional start of luxR. Based on a Western immunoblot analysis, the nucleotide change directed the synthesis of much higher level of LuxR protein without any amino acid substitutions. The results suggest that the region including the +78th base is presumably internal operator required for autorepression of luxR, and the increased cellular level of LuxR results in activation of luminescence genes by autoinducer independent fashion.

  • PDF

Integrated bioinformatics analysis of validated and circulating miRNAs in ovarian cancer

  • Dogan, Berkcan;Gumusoglu, Ece;Ulgen, Ege;Sezerman, Osman Ugur;Gunel, Tuba
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2022
  • Recent studies have focused on the early detection of ovarian cancer (OC) using tumor materials by liquid biopsy. The mechanisms of microRNAs (miRNAs) to impact OC and signaling pathways are still unknown. This study aims to reliably perform functional analysis of previously validated circulating miRNAs' target genes by using pathfindR. Also, overall survival and pathological stage analyses were evaluated with miRNAs' target genes which are common in the The Cancer Genome Atlas and GTEx datasets. Our previous studies have validated three downregulated miRNAs (hsa-miR-885-5p, hsa-miR-1909-5p, and hsa-let7d-3p) having a diagnostic value in OC patients' sera, with high-throughput techniques. The predicted target genes of these miRNAs were retrieved from the miRDB database (v6.0). Active-subnetwork-oriented Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted by pathfindR using the target genes. Enrichment of KEGG pathways assessed by the analysis of pathfindR indicated that 24 pathways were related to the target genes. Ubiquitin-mediated proteolysis, spliceosome and Notch signaling pathway were the top three pathways with the lowest p-values (p < 0.001). Ninety-three common genes were found to be differentially expressed (p < 0.05) in the datasets. No significant genes were found to be significant in the analysis of overall survival analyses, but 24 genes were found to be significant with pathological stages analysis (p < 0.05). The findings of our study provide in-silico evidence that validated circulating miRNAs' target genes and enriched pathways are related to OC and have potential roles in theranostics applications. Further experimental investigations are required to validate our results which will ultimately provide a new perspective for translational applications in OC management.

Association between expression levels and growth trait-related SNPs located in promoters of the MC4R and MSTN genes in Spinibarbus hollandi

  • Yang, Yang;Lan, Zhaojun;Shu, Hu;Zhou, Huiqiang;Jiang, Xiaolu;Hou, Liping;Gu, Pinghua
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1119-1125
    • /
    • 2018
  • Melanocortin 4 receptor: (MC4R) and Myostatin (MSTN) are two important growth trait-related genes in animals. In this study, we showed that two SNPs, MC4R-719A>G and MSTN-519C>T, found in the promoters of the MC4R and MSTN genes, respectively, are both associated with growth traits in Spinibarbus hollandi. Furthermore, we observed that there were significant associations between the expression levels of the MC4R and MSTN genes and these two growth trait-related SNPs. The expression level of MC4R gene in brain was lower in GG genotype fish with extremely high growth performance than that in AA genotype fish with extremely low growth performance. Expression level of the MSTN gene in muscle was lower in TT genotype fish with extremely high growth performance than that in CC and CT genotype fish with lower growth performance. The results indicated that these SNPs located in the promoters of MC4R and MSTN are associated with growth-related traits through modification of gene expression levels. The MSTN and MC4R SNPs may have useful application in effective marker-assisted selection aimed to increase output in S. hollandi.

Isolation of an Rx homolog from C. annuum and the evolution of Rx genes in the Solanaceae family

  • Shi, Jinxia;Yeom, Seon-In;Kang, Won-Hee;Park, Min-Kyu;Choi, Do-Il;Kwon, Jin-Kyung;Han, Jung-Heon;Lee, Heung-Ryul;Kim, Byung-Dong;Kang, Byoung-Cheorl
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.331-344
    • /
    • 2011
  • The well-conserved NBS domain of resistance (R) genes cloned from many plants allows the use of a PCR-based approach to isolate resistance gene analogs (RGAs). In this study, we isolated an RGA (CapRGC) from Capsicum annuum "CM334" using a PCR-based approach. This sequence encodes a protein with very high similarity to Rx genes, the Potato Virus X (PVX) R genes from potato. An evolutionary analysis of the CapRGC gene and its homologs retrieved by an extensive search of a Solanaceae database provided evidence that Rx-like genes (eight ESTs or genes that show very high similarity to Rx) appear to have diverged from R1 [an NBS-LRR R gene against late blight (Phytophthora infestans) from potato]-like genes. Structural comparison of the NBS domains of all the homologs in Solanaceae revealed that one novel motif, 14, is specific to the Rx-like genes, and also indicated that several other novel motifs are characteristic of the R1-like genes. Our results suggest that Rx-like genes are ancient but conserved. Furthermore, the novel conserved motifs can provide a basis for biochemical structural. function analysis and be used for degenerate primer design for the isolation of Rx-like sequences in other plant species. Comparative mapping study revealed that the position of CapRGC is syntenic to the locations of Rx and its homolog genes in the potato and tomato, but cosegregation analysis showed that CapRGC may not be the R gene against PVX in pepper. Our results confirm previous observations that the specificity of R genes is not conserved, while the structure and function of R genes are conserved. It appears that CapRGC may function as a resistance gene to another pathogen, such as the nematode to which the structure of CapRGC is most similar.

miR-375 down-regulation of the rearranged L-myc fusion and hypoxia-induced gene domain protein 1A genes and effects on Sertoli cell proliferation

  • Guo, Jia;Liu, Xin;Yang, Yuwei;Liang, Mengdi;Bai, Chunyan;Zhao, Zhihui;Sun, Boxing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1103-1109
    • /
    • 2018
  • Objective: This study aimed to screen and identify the target genes of miR-375 in pig Sertoli (ST) cells and to elucidate the effect of miR-375 on the proliferation of ST cells. Methods: In this study, bioinformatics software was used to predict and verify miR-375 target genes. Quantitative polymerase chain reaction (PCR) was used to detect the relationship between miR-375 and its target genes in ST cells. Enzyme-linked immunosorbent assay (ELISA) of rearranged L-myc fusion (RLF) and hypoxia-induced gene domain protein 1A (HIGD1A) was performed on porcine ST cells, which were transfected with a miR-375 mimics and inhibitor to verify the results. Dual luciferase reporter gene assays were performed to assess the interactions among miR-375, RLF, and HIGD1A. The effect of miR-375 on the proliferation of ST cells was analyzed by CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS). Results: Five possible target genes of miR-375, including RLF, HIGD1A, colorectal cancer associated 2, POU class 3 homeobox 1, and WW domain binding protein 1 like, were found. The results of quantitative PCR suggested that mRNA expression of RLF and HIGD1A had a negative correlation with miR-375, indicating that RLF and HIGD1A are likely the target genes of miR-375. The ELISA results revealed that RLF and HIGD1A were negatively correlated with the miR-375 protein level. The luminescence results for the miR-375 group cotransfected with wild-type RLF and HIGD1A vector were significantly lower than those of the miR-375 group co-transfected with the blank vector or mutant RLF and HIGD1A vectors. The present findings suggest that RLF and HIGD1A are target genes of miR-375 and that miR-375 inhibits ST cell proliferation according to MTS analysis. Conclusion: It was speculated that miR-375 affects cell proliferation through its target genes, which play an important role in the development of testicular tissue.