• Title/Summary/Keyword: R&D process

Search Result 3,667, Processing Time 0.039 seconds

Analysis of Type and Determinants of SME Technological Innovation in Daejeon (대전 중소·벤처기업의 기술혁신 유형 현황 및 결정요인 분석)

  • Kim, Min-Seok;An, Gi-Don
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.5
    • /
    • pp.175-189
    • /
    • 2020
  • Daejeon City has strived to support the SMEs to innovate technologies based on the capabilities of research and development of the Daedeok Innopolis. It is widely known that technological innovation is the key strategy of Small medium enterprises(SME) to survive and succeed in a market. This study aims to analyze the type and determinants of SME technological innovation in Daejeon. Even though most of firms are the small enterprises which employ less than 10 workers in Daejeon, the number of technology-oriented company per capita in Daejeon is highest in South Korea. The type of technological innovation is divided between product innovation and process innovation. The literature insists that technology-oriented small firm tends to implement product innovation rather than process innovation. SMEs in Daejeon also provided more output from product innovation than process innovation. The empirical analysis provided the results that the determinants of SME's technological innovation depends on its type. The scale of firm, R&D investment, and R&D employees positively influence product innovation of SMEs in Daejeon. However, the impact of R&D employees is not significant on innovating the existing product. Process innovation is positively affected by R&D investment and firm age. The study provides the policy implications to business supporting programs of Daejeon government. The business supporting policy of Daejeon government should focus on supporting each type of technological innovation to promote technological innovation by SME and consider strategies that focus on R&D investment and manpower support.

Optimization of VIGA Process Parameters for Power Characteristics of Fe-Si-Al-P Soft Magnetic Alloy using Machine Learning

  • Sung-Min, Kim;Eun-Ji, Cha;Do-Hun, Kwon;Sung-Uk, Hong;Yeon-Joo, Lee;Seok-Jae, Lee;Kee-Ahn, Lee;Hwi-Jun, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.459-467
    • /
    • 2022
  • Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.

The Shifting Process of R&D Spaces in Firm's Adaptation: Competences, Learning and Proximity (기업의 적용에 있어 R&D 공간의 변화: 조직적 역량, 학습 그리고 근접성)

  • Lee, Jong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.8 no.4
    • /
    • pp.529-541
    • /
    • 2002
  • This paper aims to provide a context-specific interpretation on the shifting process of in-house R&D spaces in a large Korean firm in the context of rapidly changing markets and technology. Drawing on the case study of LG Electronics Company, one of the Korea's flagship companies, I examine the causes and mechanisms leading to a shift in domestic R&D spaces and the nature of learning processes between R&D teams and between R&D and other organizational units, particularly manufacturing. It appears that the current reshaping processes of domestic R&D spaces in LGE focus more on the clustering of core R&D laboratories than the geographical integration of conception and execution. However, it should not simply be viewed that such a move would be reduced to the linear model of innovation and organizational learning. Instead, it involves the firm-specific mode of regulating organizational competences. As contextual variables to induce such a firm-specific mode of organizational change, I consider the spatial form of organization, the spatial sources of knowledge and learning, and the powers of relational learning that can be made between distanciated actors and teams.

  • PDF

Novel structure for a full-color AMOLED using a blue common layer (BCL)

  • Kim, Mu-Hyun;Chin, Byung-Doo;Suh, Min-Chul;Yang, Nam-Chul;Song, Myung-Won;Lee, Jae-Ho;Kang, Tae-Min;Lee, Seong-Taek;Kim, Hye-Dong;Park, Kang-Sung;Oh, Jun-Sik;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.797-798
    • /
    • 2005
  • We report a novel structure for a full-color AMOLED (Active Matrix Organic Light Emitting Diode) eliminating the patterning process of a blue emitting layer. The patterning of the three primary colors, RGB, is a key technology in the OLED fabrication process. Conventional full color AMOLED containing RGB layers includes the three opportunities of the defects to make an accurate position and fine resolution using various technologies such as fine metal mask, ink-jet printing and laser-induced transfer system. We can skip the blue patterning step by simply stacking the blue layer as a common layer to the whole active area after pixelizing two primary colors, RG, in the conventional small molecular OLED structure. The red and green pixel showed equivalent performances without any contribution of the blue emission.

  • PDF

The Optimization of Indium Zinc Oxide Thin Film Process in Color Filter on Array structure

  • Lee, Je-Hun;Kim, Jin-Suek;Jeong, Chang-Oh;Kim, Shi-Yul;Lim, Soon-Kwon;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1244-1247
    • /
    • 2004
  • For obtaining the best panel quality of color filter on array(COA) architecture in TFF LCD, we investigated the influence of deposition temperature, $O_2$ flow, thickness on the optical transmittance, wet etching and adhesion properties of IZO deposited onto each color photo resist(red, green, blue). Average transmittance of the pixel single layer in the visible range(between 380 and 780nm) was mainly affected by thickness and showed maximum at 1250 ${\AA}$ while the thickness showing peak transparency in each R, G, B wavelength was different. The relation was calculated by using bi-layer transmission and reflectance model, which corresponded to experimental data very well. The adhesion of IZO deposited on each color PR was found to have enhanced value except red PR case, compared to that of IZO which was deposited on $SiN_x$. Wet etching pattern linearity was decreased as the thickness increased. The thickness of IZO was one of vital factors in order to optimize overall pixel process for fabricating COA structure.

  • PDF

Development of Rapid Tooling using Investment Casting & R/P Master Model (R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발)

  • Jeong, Hae-Do;Kim, Hwa-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

A Study on the Development of Evaluation Indicators for the Proposals of National Defense Core-Technology R&D Projects (국방핵심기술 연구개발의 제안서 평가를 위한 평가지표 개발에 관한 연구)

  • Kim, Chan-Soo;Cho, Kyu-Kab
    • IE interfaces
    • /
    • v.21 no.1
    • /
    • pp.96-108
    • /
    • 2008
  • This paper proposes the systematic design approach for developing the evaluation indicators that evaluate the candidate proposals in the national defense core-technology R&D projects. To improve the validity and fairness of the evaluation indicators, the existing evaluation process in a military and a public sector are surveyed and also the existing evaluation system of the core-technology R&D programs for the national defense is analysed and discussed. A new system for the evaluation indicators is designed by using the axiomatic design, factor analysis and the analytic hierarchy process. It is expected that the proposed evaluation indicators contribute to enhance the fairness and the reliability of the evaluation process for the proposal of the national defense core-technology R&D projects.

From R&D to Commercialization : A System Dynamic Approach

  • Choi, Kang-Hwa;Kim, Soo-W.
    • International Journal of Quality Innovation
    • /
    • v.9 no.3
    • /
    • pp.123-144
    • /
    • 2008
  • This paper describes a comprehensive approach to examine how technological innovation contributes to the renewal of a firm's competences through its dynamic and reciprocal relationship with R&D and product commercialization. Three theories of technology and innovation (the R&D and technological knowledge concept, product-process concept, technological interdependence concept) are used to relate technology and innovation to strategic management. Based on these theories, this paper attempts to identify the dynamic relationship between product innovation and process innovation using system dynamics by investigating that aspect of the dynamic changes in the closed feedback circulation structure in which R&D investments drive the accumulation of technological knowledge. Further, such knowledge accumulation actualizes product innovation and process innovation, subsequently resulting in an increase in productivity, customer satisfaction, profit generation, and.

A Case Study of Six Sigma R&D Improvement Projects: Design Optimization of Inner Shield Omega CPT

  • Park, Sung H.;Park, Young H.
    • International Journal of Quality Innovation
    • /
    • v.5 no.2
    • /
    • pp.63-69
    • /
    • 2004
  • This is an R&D project on design optimization of the inner shield of the Omega color picture tube at Samsung SDI in Korea. This was an R&D project which basically used the IDOV (Identify, Design, Optimize, Validate) process for Six Sigma implementation. Most Six Sgima projects use the process of DMAIC (Define, Measure, Analyze, Improve, Control). However, this project introduces a new cycle, RDIDOV (Recognize, Define, and IDOV). Here CPT means Color Picture Tube. Sam sung SDI is one of the two companies which began Six Sigma in Korea. This case study shows a good example how an R&D Six Sigma project can be usefully employed in manufacturing companies using a new process cycle.

A Study on the Microstructure and Mechanical Properties for the Weldment with Variation of Welding Process of the API 5L-B42 Pipeline for Natural Gas Transmission (천연가스 수송용 API 5L-X42 강관의 용접방법에따른 용접부의 미세조직과 기계적 특성에 관한 연구)

  • Baek Jong-Hyun;Kim Cheol-Man;Kim Young-Pyo;Kim Woo-Sik
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.33-38
    • /
    • 1997
  • Demand of the clean and convenient natural gas has continuously increased with recognizing of the environment problem since liquefied natural gas was introduced in Korea. Clean fuel natural gas was supplied to each city through high tensile strength pipeline connected by welding. Grades of pipeline were divided into the high and middle pressure according to supply pressure. Pipeline was welded mainly SMA welding process due to its easy handling, the other welding process was adopted according to the constructing condition. We were examined on the microstructure variation and mechanical properties of weld metal for high pressure pipeline, API 5L X-42.

  • PDF