• Title/Summary/Keyword: R&E network

Search Result 266, Processing Time 0.028 seconds

Real-time prediction on the slurry concentration of cutter suction dredgers using an ensemble learning algorithm

  • Han, Shuai;Li, Mingchao;Li, Heng;Tian, Huijing;Qin, Liang;Li, Jinfeng
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.463-481
    • /
    • 2020
  • Cutter suction dredgers (CSDs) are widely used in various dredging constructions such as channel excavation, wharf construction, and reef construction. During a CSD construction, the main operation is to control the swing speed of cutter to keep the slurry concentration in a proper range. However, the slurry concentration cannot be monitored in real-time, i.e., there is a "time-lag effect" in the log of slurry concentration, making it difficult for operators to make the optimal decision on controlling. Concerning this issue, a solution scheme that using real-time monitored indicators to predict current slurry concentration is proposed in this research. The characteristics of the CSD monitoring data are first studied, and a set of preprocessing methods are presented. Then we put forward the concept of "index class" to select the important indices. Finally, an ensemble learning algorithm is set up to fit the relationship between the slurry concentration and the indices of the index classes. In the experiment, log data over seven days of a practical dredging construction is collected. For comparison, the Deep Neural Network (DNN), Long Short Time Memory (LSTM), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and the Bayesian Ridge algorithm are tried. The results show that our method has the best performance with an R2 of 0.886 and a mean square error (MSE) of 5.538. This research provides an effective way for real-time predicting the slurry concentration of CSDs and can help to improve the stationarity and production efficiency of dredging construction.

  • PDF

Dietary supplementation of solubles from shredded, steam-exploded pine particles modulates cecal microbiome composition in broiler chickens

  • Chris Major Ncho;Akshat Goel;Vaishali Gupta;Chae-Mi Jeong;Ji-Young Jung;Si-Young Ha;Jae-Kyung Yang;Yang-Ho Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.971-988
    • /
    • 2023
  • This study evaluated the effects of supplementing solubles from shredded, steam-exploded pine particles (SSPP) on growth performances, plasma biochemicals, and microbial composition in broilers. The birds were reared for 28 days and fed basal diets with or without the inclusion of SSPP from 8 days old. There were a total of three dietary treatments supplemented with 0% (0% SSPP), 0.1% (0.1% SSPP) and 0.4% (0.4% SSPP) SSPP in basal diets. Supplementation of SSPP did not significantly affect growth or plasma biochemicals, but there was a clear indication of diet-induced microbial shifts. Beta-diversity analysis revealed SSPP supplementation-related clustering (ANOSIM: r = 0.31, p < 0.01), with an overall lower (PERMDISP: p < 0.05) individual dispersion in comparison to the control group. In addition, the proportions of the Bacteroides were increased, and the relative abundances of the families Vallitaleaceae, Defluviitaleaceae, Clostridiaceae, and the genera Butyricicoccus and Anaerofilum (p < 0.05) were significantly higher in the 0.4% SSPP group than in the control group. Furthermore, the linear discriminant analysis effect size (LEfSe) also showed that beneficial bacteria such as Ruminococcus albus and Butyricicoccus pullicaecorum were identified as microbial biomarkers of dietary SSPP inclusion (p < 0.05; | LDA effect size | > 2.0). Finally, network analysis showed that strong positive correlations were established among microbial species belonging to the class Clostridia, whereas Erysipelotrichia and Bacteroidia were mostly negatively correlated with Clostridia. Taken together, the results suggested that SSPP supplementation modulates the cecal microbial composition of broilers toward a "healthier" profile.

CCR5-mediated Recruitment of NK Cells to the Kidney Is a Critical Step for Host Defense to Systemic Candida albicans Infection

  • Nu Z. N. Nguyen;Vuvi G. Tran;Saerom Lee;Minji Kim;Sang W. Kang;Juyang Kim;Hye J. Kim;Jong S. Lee;Hong R. Cho;Byungsuk Kwon
    • IMMUNE NETWORK
    • /
    • v.20 no.6
    • /
    • pp.49.1-49.15
    • /
    • 2020
  • C-C chemokine receptor type 5 (CCR5) regulates the trafficking of various immune cells to sites of infection. In this study, we showed that expression of CCR5 and its ligands was rapidly increased in the kidney after systemic Candida albicans infection, and infected CCR5-/- mice exhibited increased mortality and morbidity, indicating that CCR5 contributes to an effective defense mechanism against systemic C. albicans infection. The susceptibility of CCR5-/- mice to C. albicans infection was due to impaired fungal clearance, which in turn resulted in exacerbated renal inflammation and damage. CCR5-mediated recruitment of NK cells to the kidney in response to C. albicans infection was necessary for the anti-microbial activity of neutrophils, the main fungicidal effector cells. Mechanistically, C. albicans induced expression of IL-23 by CD11c+ dendritic cells (DCs). IL-23 in turn augmented the fungicidal activity of neutrophils through GM-CSF production by NK cells. As GM-CSF potentiated production of IL-23 in response to C. albicans, a positive feedback loop formed between NK cells and DCs seemed to function as an amplification point for host defense. Taken together, our results suggest that CCR5-mediated recruitment of NK cells to the site of fungal infection is an important step that underlies innate resistance to systemic C. albicans infection.

Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines

  • Sang-Hyun Kim;Erica Espano;Bill Thaddeus Padasas;Ju-Ho Son;Jihee Oh;Richard J. Webby;Young-Ran Lee;Chan-Su Park;Jeong-Ki Kim
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.19.1-19.15
    • /
    • 2024
  • The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Factor Structure, Validity and Reliability of The Teacher Satisfaction Scale (TSS) In Distance-Learning During Covid-19 Crisis: Invariance Across Some Teachers' Characteristics

  • Almaleki, Deyab A.;Bushnaq, Afrah A.;Altayyari, Basmah A.;Alshumrani, Amenah N.;Aloufi, Ebtesam H.;Alharshan, Najah A.;Almarwani, Ashwaq D.;Al-yami, Abeer A.;Alotaibi, Abeer A.;Alhazmi, Nada A.;Al-Boqami, Haya R.;ALhasani, Tahani N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.17-34
    • /
    • 2021
  • This study aimed to examine the Factor Structure of the teacher satisfaction scale (TSS) with distance education during the Covid-19 pandemic, as well as affirming the (Factorial Invariance) according to gender variable. It also aimed at identifying the degree of satisfaction according to some demographic variables of the sample. The study population consisted of all teachers in public education and faculty members in higher education in the Kingdom of Saudi Arabia. The (TSS) was applied to a random sample representing the study population consisting of (2399) respondents. The results of the study showed that the scale consists of five main factors, with a reliability value of (0.94). The scale also showed a high degree of construct validity through fit indices of the confirmatory factor analysis. The results have shown a gradual consistency of the measure's invariance that reaches the third level (Scalar-invariance) of the Measurement Invariance across the gender variable. The results also showed that the average response of the study sample on the scale reached (3.74) with a degree of satisfaction, as there are no statistically significant differences between the averages of the study sample responses with respect to the gender variable. While there were statistically significant differences in the averages with respect to the variable of the educational level in favor of the middle school and statistically significant differences in the averages attributed to the years of experience variable in favor of those whose experience is less than (5) years.

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

Prediction of Shore Tide level using Artificial Neural Network (인공신경망을 이용한 해안 조위예측)

  • Rhee Kyoung Hoon;Moon Byoung Seok;Kim Tae Kyoung;Oh jong yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1068-1072
    • /
    • 2005
  • 조석이란, 해면의 완만한 주기적 승강을 말하며, 보통 그 승강은 1일 약 2회이나, 곳에 따라서는 1일 1회의 곳도 있다. 조석에 있어서는 이 밖에 수일의 주기를 갖는 약간 불규칙한 승강, 반년, 또는 1년을 주기로 하는 다소 규칙적인 승강까지 포함하여 취급한다. 그러나, 각 항만마다 갖는 특정적인 주기인 수분내지 수십분의 주기의 승강은 조석으로 취급하지 않는다. 조석은 해양의 제현상 중에서 예측가능성이 가장 큰 현장으로 이는 조석이 천체의 운행과 연관되기 때문이다. 조석이란 지구로부터 일정한 거리에서 각 고유의 속도를 가지는 적도상을 운행하는 무수의 가상천체에 기인하는 규칙적인 개개의 조석을 합성한 것이며 이 개개의 조석을 분조(Constituent)라 한다. 여기에서 사용되는 신경망 모형은 입력과 출력으로 구성되는 블랙박스 모형으로서 하나의 시스템을 병렬적으로 비선형적으로 구축할 수 있다는 장점 때문에 과거 하천유역의 강우-유출과정에서의 경우 유출현상을 해석하고 유출과정을 모형화 하기 위해 사용하였다. 본 연구에서는 기존의 조위 예측방법인 조화분석법이 아닌 인공신경망을 이용하여 조위예측을 실시하였다. 학습이라는 최적화 과정을 통해 구조와 기능이 복잡한 자연현상을 그대로 받아들여 축적시킴으로써 이를 지식으로 현상에 대한 재현능력이 뛰어나고, 또한 신경회로망의 연상기억능력에 적용하여 수학적으로 표현이 불가능한 불확실한 조위곡선에 적용하기에 유리한 장점을 가지고 있다. 본 연구의 목적은 과거 조위이론을 통해 이루었던 조위예측을 우리가 알기 쉬운 여러 기후인자(해면기압, 풍향, 풍속, 음력 등)에 따른 조위곡선을 예측하기 위해 신경망 모형을 이용하여 여수지역의 조위에 적용하여 비교 분석하고자 한다. May가 제안한 공식을 더 확장하여 적용할 수 있는 실험 공식으로 개선하였으며 다양한 조건에 대한 실험을 수행하여 보다 정밀한 공식으로 개선할 수 있었다.$10,924m^3/s$ 및 $10,075m^3/s$로서 실험 I의 $2,757m^3/s$에 비해 통수능이 많이 개선되었음을 알 수 있다.함을 알 수 있다. 상수관로 설계 기준에서는 관로내 수압을 $1.5\~4.0kg/cm^2$으로 나타내고 있는데 $6kg/cm^2$보다 과수압을 나타내는 경우가 $100\%$로 밸브를 개방하였을 때보다 $60\%,\;80\%$ 개방하였을 때가 더 빈번히 발생하고 있으므로 대상지역의 밸브 개폐는 $100\%$ 개방하는 것이 선계기준에 적합한 것으로 나타났다. 밸브 개폐에 따른 수압 변화를 모의한 결과 밸브 개폐도를 적절히 유지하여 필요수량의 확보 및 누수방지대책에 활용할 수 있을 것으로 판단된다.8R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$로 나타났다.천성 승모판 폐쇄 부전등을 초래하는 심각한 선

  • PDF

Structural Strength Evaluation for Development of a Vertical Transfer Device for a Personal Rapid Transit (PRT) Vehicle (PRT 차량용 수직이송장치의 개발을 위한 구조강도 평가)

  • Kang, Seok-Won;Um, Ju-Hwan;Jeong, Rag-Gyo;Song, Joon-Hyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.165-173
    • /
    • 2015
  • This paper presents numerical results of static structural stability analysis in development of a vertical transfer device of a PRT(Personal Rapid Transit) vehicle. The vertical transfer of a fully occupied vehicle operating on a road network is the first attempt, which is expected to contribute to overcome the limitations of conventional 2-dimensional operation mode. In particular, the vertical transfer apparatus designed based on vertical circulating conveyors is capable of continuous transfer without time delay so that it enables to accommodate a high traffic density. This system has been frequently used in a logistics field; however, it is essential to assess a structural integrity because an external force by a vehicle weight is exerted on the conveyors in the form of a concentrated load unlike a conventional logistic transport. In this study, prior to the production process, the structural performance of the pilot design in an early stage is numerically evaluated using the commercial finite element method (FEM) solver (i.e., $Ansys^{(R)}$).