CHU, Wujin;HONG, Yong-pyo;PARK, Wonkoo;IM, Meeja;SONG, Mee Ryoung
유통과학연구
/
제18권9호
/
pp.31-43
/
2020
Purpose: This study examined a comprehensive model for assessing the success probability of electric vehicle (EV) commercialization in the Korean market. The study identified three risks associated with successful commercialization which were technology, social, policy, environmental, and consumer risk. Research design, methodology: The assessment of the riskiness was represented by a Bayes belief network, where the probability of success at each stage is conditioned on the outcome of the preceding stage. Probability of success in each stage is either dependent on input (i.e., investment) or external factors (i.e., air quality). Initial input stages were defined as the levels of investment in product R&D, battery technology, production facilities and battery charging facilities. Results: Reasonable levels of investment were obtained by expert opinion from industry experts. Also, a survey was carried out with 78 experts consisting of automaker engineers, managers working at EV parts manufacturers, and automobile industry researchers in government think tanks to obtain the conditional probability distributions. Conclusion: The output of the model was the likelihood of success - expressed as the probability of market acceptance - that depended on the various input values. A model is a useful tool for understanding the EV industry as a whole and explaining the likely ramifications of different investment levels.
Purpose - The purpose of this study was to conduct a preliminary study to identify key trends on research articles indexed in KCI in relation to tourism in Jeju and sports tourism. Design/methodology/approach - Information regarding research articles focused on Jeju tourism and sports tourism indexed in KCI (145 and 120 articles respectively) were collected and finally abstract written in Korean of 100 and 91 articles on sports tourism and Jeju tourism respectively were chosen for the further analysis after removing redundant articles. R program was used to analyze keyword frequencies, co-occurring terms, and degree/betweeness centrality measures and visualize the keyword network results. Findings - Event, marketing, content, program, implication, service, stadium, and tourism destination have been identified as keywords with highest frequencies among research on sport tourism, whereas tourism destination, image, brand, content, data, Chinese, satisfaction, eco-tourism service, place of arrival were highly appearing terms among research on Jeju tourism. Research implications or Originality - This study highlighted that Jeju has been interlinked with a range of terms such as programs influencing Jeju tourism, natural environment, tourism-related resources (e.g., museums, dramas, etc.), whereas sports has been closely related to sports event and vaiours types of sports (e.g., bicycle, staking, and scuber), but not to Jeju-do.
In a Gas Insulated Substation (GIS), Very Fast Transients (VFTs) are generated mainly due to switching operations. These transients may cause internal faults, i.e., layer-to-layer faults in a capacitively graded bushing as it is one of the most important terminal equipment for GIS. The healthiness of the bushing is generally verified by measuring its leakage current. However, the change in current magnitude/pattern is only marginal for different types of fault conditions. Leakage current monitoring (LCM) systems generate large amounts of data and computer aided interpretation of defects may be of great assistance when analyzing this data. In view of the above, ANN techniques have been used in this study for identification of these minor faults. A single layer perceptron network, a two layer feed-forward back propagation network and cascade correlation (CC) network models are used to identify interlayer faults in the bushing. The effectiveness of the CC network over perceptron and back propagation networks in identification of a fault has been analysed as part of the paper.
International Journal of Computer Science & Network Security
/
제24권5호
/
pp.64-72
/
2024
In recent times cyber attackers can use Artificial Intelligence (AI) to boost the sophistication and scope of attacks. On the defense side, AI is used to enhance defense plans, to boost the robustness, flexibility, and efficiency of defense systems, which means adapting to environmental changes to reduce impacts. With increased developments in the field of information and communication technologies, various exploits occur as a danger sign to cyber security and these exploitations are changing rapidly. Cyber criminals use new, sophisticated tactics to boost their attack speed and size. Consequently, there is a need for more flexible, adaptable and strong cyber defense systems that can identify a wide range of threats in real-time. In recent years, the adoption of AI approaches has increased and maintained a vital role in the detection and prevention of cyber threats. In this paper, an Ensemble Deep Restricted Boltzmann Machine (EDRBM) is developed for the classification of cybersecurity threats in case of a large-scale network environment. The EDRBM acts as a classification model that enables the classification of malicious flowsets from the largescale network. The simulation is conducted to test the efficacy of the proposed EDRBM under various malware attacks. The simulation results show that the proposed method achieves higher classification rate in classifying the malware in the flowsets i.e., malicious flowsets than other methods.
Egilmez, Ferhan;Ergun, Gulfem;Cekic-Nagas, Isil;Vallittu, Pekka Kalevi;Lassila, Lippo Veli Juhana
The Journal of Advanced Prosthodontics
/
제10권1호
/
pp.32-42
/
2018
PURPOSE. The purpose of this study was to derive and compare the inherent color (hue angle, chroma), translucency ($TP_{SCI}$), surface gloss (${\Delta}E^*_{SCE-SCI}$), and surface roughness ($R_a$) amongst selected shades and brands of three hybrid CAD/CAM blocks [GC Cerasmart (CS); Lava Ultimate (LU); Vita Enamic (VE)]. MATERIALS AND METHODS. The specimens (N = 225) were prepared into square-shaped ($12{\times}12mm^2$) with different thicknesses and shades. The measurements of color, translucency, and surface gloss were performed by a reflection spectrophotometer. The surface roughness and surface topography were assessed by white light interferometry. RESULTS. Results revealed that hue and chroma values were influenced by the material type, material shade, and material thickness (P < .001). The order of hue angle amongst the materials was LU > CS > VE, whereas the order of chroma was VE > CS > LU. $TP_{SCI}$ results demonstrated a significant difference in terms of material types and material thicknesses ($P{\leq}.001$). $TP_{SCI}$ values of the tested materials were ordered as LU > CS > VE. ${\Delta}E^*_{SCE-SCI}$ and $R_a$ results were significantly varied amongst the materials (P < .001) and amongst the shades (P < .05). The order of ${\Delta}E^*_{SCE-SCI}$ amongst the materials were as follows $LU>VE{\geq}CS$, whereas the order of $R_a$ was $CS{\geq}VE>LU$. CONCLUSION. Nano-ceramic and polymer-infiltrated-feldspathic ceramic-network CAD/CAM materials exhibited different optical, inherent color and surface parameters.
In Erhualian and Yorkshire reciprocal cross $F_1$ pig populations, we examined the mRNA expression characteristic of liver-derived IGF-1, IGF-1R, IGF-2, IGF-2R and IGFBP-3 during the embryonic and postnatal developmental periods (E50, E70, E90, D1, D20, D70, D120 and D180). Our results demonstrated that the IGF-system genes mRNA levels exhibited an ontogenetic expression pattern, which was potentially associated with the porcine embryonic development, postnatal growth, organogenesis and even the initiation and acceleration of puberty. The expression pattern of IGF-system genes showed variation in the reciprocal cross ($F_1$ YE and EY pigs). This study also involved the expression features of imprinted genes IGF-2 and IGF-2R. The parent-of-origin effect of imprinted genes was reflected by their differential expression between the reciprocal crosses populations. The correlation analysis also indicated that the regulatory network and mechanisms involved in the IGF system were a complex issue that needs to be more fully explored. A better understanding of IGF system components and their interactive mechanisms will enable researchers to gain insights not only into animal organogenesis but also into somatic growth development and even reproduction.
Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
Computers and Concrete
/
제32권2호
/
pp.149-163
/
2023
One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.
The operational aerosol retrieval algorithm for the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements was recently updated and named collection 6 (C6). The C6 MODIS aerosol algorithm, a substantially improved version of the collection 5 (C5) algorithm, uses an enhanced aerosol optical thickness(AOT) retrieval process consisting of new surface reflection and aerosol models. This study reports on the estimation and validation of the two latest versions, the C5 and C6 MODIS aerosol products over the East Asian region covering $20^{\circ}N$ to $56^{\circ}N$ and $80^{\circ}E$ to $150^{\circ}E$. This study also presents a comparative validation of the two versions(C5 and C6) of algorithms with different methods(Dark Target(DT) and Deep Blue (DB) retrieval methods) from the Terra and Aqua platforms to make use of the Aerosol Robotic Network (AERONET) sites for the years 2000-2016. Over the study region, the spatially averaged annual mean AOT retrieved from C6 AOT is about 0.035 (5%) less than the C5 counterparts. The linear correlations between MODIS and AERONET AOT are R = 0.89 (slope = 0.86) for C5 and R = 0.95 (slope = 1.00) for C6. Moreover, the magnitude of the mean error in C6 AOT-the difference between MODIS AOT and AERONET AOT-is 40% less than that in C5 AOT.
Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.
한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.431-434
/
2001
Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.