Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.2
/
pp.158-167
/
2017
This paper presents the technology rating methodology that is applicable to defense R&D technology. First, a technology profitability index was developed using multiple regression analysis to forecast the revenue from technology transfer. Secondly, the technology evaluation index was derived using hierarchical analysis with expert opinion. Finally, the weighted average of the technology profitability index and technology evaluation index were calculated to derive the technology rating. This study is significant in that it is first attempt to evaluate defense R&D technology by rating. If the defense R&D technology rating methodology is applied in practice, it can contribute to efficient R&D budget allocation. In addition, it will help in the vitalization of technology transfer in the defense R&D sector.
The purpose of this paper is to provide the affirmative solution of the following conjecture due to Davis and Geramita. Conjecture; Let A=R[T] be a polynomial ring in one variable, where R is a regular local ring of dimension d. Then maximal ideals in A are complete intersection. Geramita has proved that the conjecture is true when R is a regular local ring of dimension 2. Whatwadekar has rpoved that conjecture is true when R is a formal power series ring over a field and also when R is a localization of an affine algebra over an infinite perfect field. Nashier also proved that conjecture is true when R is a local ring of D[ $X_{1}$,.., $X_{d-1}$] at the maximal ideal (.pi., $X_{1}$,.., $X_{d-1}$) where (D,(.pi.)) is a discrete valuation ring with infinite residue field. The methods to establish our results are following from Nashier's method. We divide this paper into three sections. In section 1 we state Theorems without proofs which are used in section 2 and 3. In section 2 we prove some lemmas and propositions which are used in proving our results. In section 3 we prove our main theorem.eorem.rem.
Many countries implement an offset program as a method of the acquisition of modern military technology for enhancement of the domestic military strength. Offset agreements are made based on the value, not a monetary unit. The value should be above minimum threshold fixed by the related regulation. Hence, technology valuation model which is objective and reasonable is required vitally. At present, some defense related organizations such as DTaQ, ADD valuate the proposed technology by using their own method. However, due to the lack of differentiation of valuation analysis indicators for various technologies, existing offset valuation models are inadequate to consider whole characteristics of such technologies. In this paper, we developed four sets of offset valuation analysis indicators considering the characteristics of each technology, parts production, depot maintenance, military equipment performance upgrade, and R&D related technology, by using the Delphi method. Also, we structurized those indicators in each technology by using the factor analysis. Through applying developed indicators, it is expected that technology valuation in the offset program would be more credible and accurate. Ultimately, it gives greater bargaining power to negotiators in the procedure of the offset negotiation.
Due to explosive expansion in R & D efforts for advancement of technological predominance by Enterprises, the volume of technical information rapidly increases and emphasize on the valuation of this information has grown ever increasingly important. Therefore the requirement for systematic management and safeguard and accumulation of these intellectual properties of the Enterprise is in very high demand. A lot of effort and research has been carried out and many on going studies in progress to try to derive the optimum solution on how to manage information retention policy, processes, execution method, and hardware to execute the information with and etc. The intent of this thesis is to recommend a way for the Enterprise on how to evaluate the valuation of the data and to suggest the method on how to manage these intellectual properties by way of using Information Lifecycle Management theory which manages data according to the business valuation of the data. The decision on valuation of data and retention cycle is based on analytic method of a nonparametric regression, experimentation was carried out by applying to Enterprise Document Management System to present the suitable retention cycle according to the valuation and variety of attribute of data.
Korean Journal of Construction Engineering and Management
/
v.15
no.4
/
pp.58-67
/
2014
The proportion of investment in national R&D projects in construction and transportation has been increasing continuously; in terms of the size of R&D projects, there are many medium- to large-sized projects of over KRW 10 billion. However, in spite of such continuous increase in R&D investments, there are many technologies developed but not commercialized, i.e., the quiescence of technology. Accordingly, it is necessary to link the R&D results to commercialization by expanding the scope of R&D projects. In this context, this study presented objective reference prices to be used in contracting/transacting technology and implementing commercialization strategy by conducting technology valuations against on-going research projects with earnings approach, and by estimating value of patented technology. Sum of free cash flow (business value) that can be generated during the life of the technology was estimated as KRW 512 million by reflecting a discount rate of 16.34% to convert it into the present value. In addition, the technology value was computed as KRW 227million by applying a technology factor of 44.39% to the above value. Based on the technology value estimated in this way, it is necessary to establish industrialization and commercialization strategy of the technology.
For securing technology and business competences of companies that is the engine of domestic industrial growth, government-supported policy programs for the creation of commercialization results in various forms such as 『Technology Transaction Market Vitalization』 and 『Technology Finance-based R&D Commercialization Support』 have been carried out since 2014. So far, various studies on technology valuation theories and evaluation variables have been formalized by experts from various fields, and have been utilized in the field of technology commercialization. However, Their practicality has been questioned due to the existing constraint that valuation results are assessed lower than the expectation in the evaluation sector. Even considering that the evaluation results may differ depending on factors such as the corporate situation and investment environment, it is necessary to establish a reference infrastructure to secure the objectivity and reliability of the technology valuation results. In this study, we investigate the evaluation infrastructure built by each institution and examine whether the latest artificial neural networks and deep learning technologies are applicable for performing predictive simulation of technology values based on principal variables, and predicting sales estimates and qualitative evaluation scores in order to embed onto the technology valuation system.
Economic value of a certain technology is of great interest and importance in a wide variety of investment circumstances. These vary from companies considering investing in R&D projects, to venture capitalists funding start-up companies. However, such valuation is extremely difficult in any case, and the cost of failure can be very high. Many techniques have been proposed to assist managers facing this issue, from traditional discounted cash flow analysis to more recent methods based on real options. In the meantime, the discounted cash flow method has limitations in applying the valuation of technology. At the same time, there have been various solutions to overcome theoretical problems of the method. Real options have been thought as a solution. However, there are another problems in using them in real world. This paper reviews the previous studies on the valuation of technology in several aspects, discusses the practicability of the various methods available, and explore the application of a hybrid model, which aims to make these rather aore the ideas more accessible to practicing managers.
This paper empirically studies the relationship between R&D expenditures and firms value. First, we can conjecture that R&D expenditures are enhancing the firms value. Such findings depend on an existing research, which R&D expenditures are intangible asset rather than expenses. Although, under U.S. accounting standards, financial statements do not report intangible assets but costs. Second, we can conjecture that short-term, the rate of increase in R&D expenditures had negative influence on firms valuation, because such findings indicates that R&D spending of costs incur mis-pricing. But long-term, consistently R&D expenditures may attract investors on the stock market. Third, lately firms focus on capital efficiency management, such a firms R&D expenditures incur high ROE. Generally investors put too much confidence in capital efficiency management and high ROE may attract investors on the stock market. Finally, High-Tech through the R&D investment improve firms competitive advantage, by competitive advantage, firms have reduced cost and raised productivity in the end improve firms value.
In this paper, we analyse empirically the effects of financial characteristics on the relationship between R&D investment and market value of firms listed on Korea Exchange. The main results of this study can be summarized as follows. Firm size increase the market valuation of R&D investment because it provides economies of scale, easier access to capital market, and R&D cost spreading. Market share also positively effects the relationship between R&D investment and firm value. Alternatively, free cash flow has a negative effect on the relationship between R&D investment and firm value because firms with high free cash flow could be tempted to use the free cash flow to undertake negative NPV projects. The dependence on external finance is a handicap negatively assessed by the market when firms undertake R&D projects due to the higher information asymmetry associated with this kind of project. Labor intensity has a negative effect on the relationship between R&D investment and firm value because the abnormal profits arising from R&D investment are diluted among employees. Capital intensity also has a negative effect on the relationship between R&D investment and firm value due to the greater financial constraints faced by capital intensive firms. In conclusion, several financial characteristics(firm size and market share) positively effect the relationship between R&D investment and firm value, while others(free cash flow, dependence on external finance, labor intensity, and capital intensity) exert a negative effect. Therefore, we conclude that the effectiveness of R&D investment depends on these financial characteristics.
Sung, Tae-Eung;Kim, Da Seul;Jang, Jong-Moon;Park, Hyun-Woo
Journal of Korea Technology Innovation Society
/
v.19
no.2
/
pp.254-279
/
2016
Recently, with the conversion towards knowledge-based economy era, the importance of the evaluation for patent valuation has been growing rapidly because technology transactions are increasing with the purpose of practically utilizing R&D outcomes such as technology commercialization and technology transfer. Nevertheless, there is a lack of research on determinants of patent valuation by analyzing technology transactions due to the difficulty of collecting data in practice. Hence, to suggest quantitative determinants for the patent valuation which could be applied to scoring methods, 15 patent valuation models domestically and overseas are analysed in order to assure the objectiveness for subjective results from qualitative methods such as expert surveys, comparison assessment, etc. Through this analysis, the important 6 common determinants are drawn and patent information is matched which can be used as proxy variables of individual determinant factors by advanced researches. In addition, to validate whether the model proposed has a statistically meaningful effect, total 517 technology transactions are collected from both public and private technology transaction offices and analysed by multiple regression analysis, which led to significant patent determinant factors in deciding its value. As a result, it is herein presented that patent connectivity(number of literature cited) and commercialization stage in market influence significantly on patent valuation. The meaning of this study is in that it suggests the significant quantitative determinants of patent valuation based on the technology transactions data in practice, and if research results by industry are systematically verified through seamless collection of transaction data and their monitoring, we would propose the customized patent valuation model by industry which is applicable for both strategic planning of patent registration and achievement assessment of research projects (with representative patents).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.