• Title/Summary/Keyword: R&D Test Process

Search Result 451, Processing Time 0.035 seconds

Microstructures and Mechanical Properties of Extruded Al 7050 Billet and Ring Forged One with Large Scale

  • Bae, Dong-Su;Joo, Kyung-Hwan;Lee, Jin-Kyung;Lee, Sang-Pill;Chang, Chang-Beom;Hong, Sung-Seop;Park, Tae-Won
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.40-45
    • /
    • 2016
  • The manufacturing process of large scaled Al 7050 alloy is difficult for the occurrence of solidification crack during casting. The aims of this study are the evaluations of microstructure and mechanical properties of extruded Al 7050 billet and ring forged one with large scale. Large scaled Al 7050 billet was casted by direct-chill casting process. The extruded and ring forged specimens were prepared from the casted ingot after residual stress relief and homogenization heat treatment, respectively. Microstructures, hardness and tensile test of the surface, middle and center part of each specimen were performed at room temperature. Sheared and elongated type grains were observed at the edge parts of surface and center area and its aspect ratios of grains were low and similar as 0.21 while that of middle area was closed to 0.92 value in ring forged Al 7050 alloy. The mechanical properties of extruded Al 7050 alloy were superior than those of ring forged one. The hardness values of surface and center part were slightly higher than that of middle part in ring forged Al 7050 alloy.

A Study of the Stability and Moisturizing Effect of Non-Animal Cholesteric Liquid Crystal (비동물성 콜레스테릭 액정의 안정성과 보습효능에 관한 연구)

  • Woo, Byoung Young;Min, Dae Jin;Baek, Heung Soo;Kim, Shin Hyoung;Hwang, Joon Young;Park, Young Ho;Lee, John Hwan;Shin, Song Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.141-153
    • /
    • 2014
  • This study is about the development of cholesteric liquid crystals (CLCs), which are highly applicable to cosmetics formulation. The CLCs made from non-animal origin were chosen not only because they are free of animal viruses but also because they give a sense of security to the cosmetic consumers. Three kinds of new cholesteric derivatives (CI, CC, CN) were synthesized using non-animal cholesterol [NAB cholesterol (ARCH LONZA)], which was originally made by fermentation process. To develop high applicability to cosmetics formulation, we attempted to find out the optimum compositions in which CLCs can maintain their color over a wide range of temperature. The CLCs in 41 different compositions were prepared by the combinations of three cholesteric derivatives and a visual evaluation method was employed to determine the range of temperature at which the CLCs display their color. The 205 UV-VIS spectral data obtained from 41 CLCs at various temperatures were simultaneously analyzed to investigate the critical factors affecting the characteristics of the CLCs. Results showed that A4, A5, A6 and A7 were the best compositions to cosmetics formulation. A6 composition had a great moisturizing effect by the artificial skin test ($AmoReSkin^{TM}$).

Korea Pathfinder Lunar Orbiter (KPLO) Operation: From Design to Initial Results

  • Moon-Jin Jeon;Young-Ho Cho;Eunhyeuk Kim;Dong-Gyu Kim;Young-Joo Song;SeungBum Hong;Jonghee Bae;Jun Bang;Jo Ryeong Yim;Dae-Kwan Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.43-60
    • /
    • 2024
  • Korea Pathfinder Lunar Orbiter (KPLO) is South Korea's first space exploration mission, developed by the Korea Aerospace Research Institute. It aims to develop technologies for lunar exploration, explore lunar science, and test new technologies. KPLO was launched on August 5, 2022, by a Falcon-9 launch vehicle from cape canaveral space force station (CCSFS) in the United States and placed on a ballistic lunar transfer (BLT) trajectory. A total of four trajectory correction maneuvers were performed during the approximately 4.5-month trans-lunar cruise phase to reach the Moon. Starting with the first lunar orbit insertion (LOI) maneuver on December 16, the spacecraft performed a total of three maneuvers before arriving at the lunar mission orbit, at an altitude of 100 kilometers, on December 27, 2022. After entering lunar orbit, the commissioning phase validated the operation of the mission mode, in which the payload is oriented toward the center of the Moon. After completing about one month of commissioning, normal mission operations began, and each payload successfully performed its planned mission. All of the spacecraft operations that KPLO performs from launch to normal operations were designed through the system operations design process. This includes operations that are automatically initiated post-separation from the launch vehicle, as well as those in lunar transfer orbit and lunar mission orbit. Key operational procedures such as the spacecraft's initial checkout, trajectory correction maneuvers, LOI, and commissioning were developed during the early operation preparation phase. These procedures were executed effectively during both the early and normal operation phases. The successful execution of these operations confirms the robust verification of the system operation.

An Experiment Study for S/N Ratio of Bead Geometry for Guaranteeing the Welding Quality in Bellows Weld Joint (벨로우즈 용접부의 품질확보를 위한 비드형상 S/N비에 관한 실험적 연구)

  • Lee, Jong-Pyo;Kim, Ill-Soo;Park, Min-Ho;Jin, Byeong-Ju;Kim, In-Ju;Kim, Ji-Sun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • The automatic welding systems, have received much attention in recent years, because they are highly suitable not only to increase the quality and productivity, but also to decrease manufacturing time and cost for a given product. Automatic welding work in semiconductor or space industry to be carried out in pipe line and butt joint mostly and plasma arc welding(PAW) is actively applied. To get the desired quality welds in automated welding system is challenging, a mathematical model is needed that has complete control over the relevant process parameters in order to obtain the required mechanical properties. However, In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. Therefore, this paper investigates the interaction between the welding parameters and mechanical properties for predicting the weld bead geometry by analyzing the S/N ratio.

Ag Sintering Die Attach Technology for Wide-bandgap Power Semiconductor Packaging (Wide-bandgap 전력반도체 패키징을 위한 Ag 소결 다이접합 기술)

  • Min-Su Kim;Dongjin Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • Recently, the shift to next-generation wide-bandgap (WBG) power semiconductor for electric vehicle is accelerated due to the need to improve power conversion efficiency and to overcome the limitation of conventional Si power semiconductor. With the adoption of WBG semiconductor, it is also required that the packaging materials for power modules have high temperature durability. As an alternative to conventional high-temperature Pb-based solder, Ag sintering die attach, which is one of the power module packaging process, is receiving attention. In this study, we will introduce the recent research trends on the Ag sintering die attach process. The effects of sintering parameters on the bonding properties and methodology on the exact physical properties of Ag sintered layer by the realization 3D image are discussed. In addition, trends in thermal shock and power cycle reliability test results for power module are discussed.

A Durability Evaluation of Remanufactured Industrial Hydraulic Pump and Solenoid Valve (산업용 유압펌프 및 솔레노이드 밸브 재제조품의 내구성 평가)

  • Lee, Kyu-Chang;Park, Sang-Jin;Son, Woo-Hyun;Jeon, Chang-Su;Mok, Hak-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.537-546
    • /
    • 2021
  • Remanufacturing is one of the most important resource recycling technology in response to resource depletion and environmental pollution. Domestic remanufacturing industry don't invigorate compared to other advanced countries because of low price and reliability of remanufactured product. In this study, remanufactured hydraulic pump and solenoid valve were evaluated durability by accelerated life test. In order that standard remanufacturing process was developed by core analysis and failure mode and effect analysis. And cores were remanufactured by standard remanufacturing process. For accelerated life test, the evaluation item and criteria were deduced by results of FMEA, reliability standards and enterprise interior criteria. To evaluate durability of remanufactured product, the remanufactured hydraulic pump and solenoid valve were evaluated performance after accelerated life test and the results were satisfied with criteria. This study showed that remanufactured products have a similar level of durability to new products by definition of remanufacturing.

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.

Wireless TDD Time Synchronization Technique Considering the Propagation Delay Between Mobile Vehicles (이동체간 전파지연을 고려한 무선 TDD 시각 동기화 기법)

  • Boo, Jung-il;Ha, Jeong-wan;Kim, Kang-san;Kim, Bokki
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.392-399
    • /
    • 2019
  • In this paper, we have studied wireless time division duplex(TDD) time synchronization technique considering the propagation delay between mobile vehicles. The existing IEEE 1588 precision time protocol(IEEE 1588 PTP) algorithm was applied and the time synchronization between the two nodes was achieved through the propagation delay and clock offset time correction calculated between master slave nodes during wireless TDD communication. The time synchronization process and procedure of IEEE 1588 PTP algorithm were optimized, thereby reducing the propagation delay error sensitivity for real-time moving vehicles. The sync flag signal generated through the time correction has a time synchronization accuracy of max +252.5 ns within 1-symbol(1.74 M symbol/sec, ${\pm}287.35ns$) through test and measurement, and it was confirmed that the time synchronization between master slave nodes can be achieved through sync flag signal generated during GPS disturbance.

Analysis of the Relationship between Cognitive Levels and Achievement of Science Process Skills by Practical Assessment (실험 평가를 통한 탐구과정 기능의 성취도와 인지 수준과의 관계 분석)

  • Min, Hye-Young;Paik, Seoung-Hey;Kang, Dae-Hun
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.2
    • /
    • pp.256-265
    • /
    • 1999
  • The purpose of this study is to investigate the relationship between cognitive levels and achievement of science process skills. A science laboratory process skills test based on optional instrument of the SISS was administered to a sample of 162 students in the 8th grade. Practical assessment tasks consisted of the contents about acid, base, density, and a property of cobalt chloride. The format of this practical test was the station type that students had to conduct a short activity. Science process skills included three sub-skills which were categorized as designing, performing, and reasoning. As cognitive levels develop from concrete operational stage to transition stage and formal operational stage. total scores of science process skills and mean scores of sub-skills were significantly increased. Regardless of cognitive levels. all students were more successful on performing than designing or reasoning. In case of being controlled cognitive levels, gender differences and area differences were not detected in achievement of science process skills. According to these results. there was a strong relationship between cognitive levels and achievement of science process skills by practical assessment. This study implies that considering student's cognitive levels is very important for improving science process skills.

  • PDF

The continuous-discontinuous Galerkin method applied to crack propagation

  • Forti, Tiago L.D.;Forti, Nadia C.S.;Santos, Fabio L.G.;Carnio, Marco A.
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • The discontinuous Galerkin method (DGM) has become widely used as it possesses several qualities, such as a natural ability to dealing with discontinuities. DGM has its major success related to fluid mechanics. Its major importance is the ability to deal with discontinuities and still provide high order of approximation. That is an important advantage when simulating cracking propagation. No remeshing is necessary during the propagation, since the crack path follows the interface of elements. However, DGM comes with the drawback of an increased number of degrees of freedom when compared to the classical continuous finite element method. Thus, it seems a natural approach to combine them in the same simulation obtaining the advantages of both methods. This paper proposes the application of the combined continuous-discontinuous Galerkin method (CDGM) to crack propagation. An important engineering problem is the simulation of crack propagation in concrete structures. The problem is characterized by discontinuities that evolve throughout the domain. Crack propagation is simulated using CDGM. Discontinuous elements are placed in regions with discontinuities and continuous elements elsewhere. The cohesive zone model describes the fracture process zone where softening effects are expressed by cohesive zones in the interface of elements. Two numerical examples demonstrate the capacities of CDGM. In the first example, a plain concrete beam is submitted to a three-point bending test. Numerical results are compared to experimental data from the literature. The second example deals with a full-scale ground slab, comparing the CDGM results to numerical and experimental data from the literature.