• Title/Summary/Keyword: Quick-bird

Search Result 90, Processing Time 0.026 seconds

SEMI-AUTOMATIC EXTRACTION OF AGRICULTURAL LAND USE AND VEGETATION INFORMATION USING HIGH RESOLUTION SATELLITE IMAGES

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.147-150
    • /
    • 2008
  • This study refers to develop a semi-automatic extraction of agricultural land use and vegetation information using high resolution satellite images. Data of IKONOS satellite image (May 25 of 2001) and QuickBird satellite image (May 1 of 2006) which resembles with the spatial resolution and spectral characteristics of KOMPSAT3. The precise agricultural land use classification was tried using ISODATA unsupervised classification technique and the result was compared with on-screen digitizing land use accompanying with field investigation. For the extraction of vegetation information, three crops of paddy, com and red pepper were selected and the spectral characteristics were collected during each growing period using ground spectroradiometer. The vegetation indices viz. RVI, NDVI, ARVI, and SAVI for the crops were evaluated. The evaluation process is under development using the ERDAS IMAGINE Spatial Modeler Tool.

  • PDF

AUTOMATIC IMAGE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING DATA BY COMBINING REGION AND EDGE INFORMATION

  • Byun, Young-Gi;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.72-75
    • /
    • 2008
  • Image segmentation techniques becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Seeded Region Growing (SRG) and Edge Information. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying SRG. Finally the region merging process, using region adjacency graph (RAG), was carried out to get the final segmentation result. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

  • PDF

Development of the forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data

  • Sasakawa, Hiroshi;Tsuyuki, Satoshi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.467-469
    • /
    • 2003
  • This research aimed to develop forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data. QuickBird data was used as satellite data. The method of this research was to extract satellite data for every single tree crown using image segmentation technique, then to evaluate the accuracy of classification by changing grouping criteria such as tree species, families, coniferous or broad-leaved species, and timber prices. As a result, the classification of tree species and families level was inaccurate, on the other hand, coniferous or broad-leaved species and timber price level was high accurate.

  • PDF

Geometrical Comparisons between Rigorous Sensor Model and Rational Function Model for Quickbird Images

  • Teo, Tee-Ann;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.750-752
    • /
    • 2003
  • The objective of this investigation is to compare the geometric precision of Rigorous Sensor Model and Rational Function Model for QuickBird images. In rigorous sensor model, we use the on-board data and ground control points to fit an orbit; then, a least squares filtering technique is applied to collocate the orbit. In rational function model, we first use the rational polynomial coefficients provided by the satellite company. Then the systematic bias of the coefficients is compensated by an affine transformation using ground control points. Experimental results indicate that, the RFM provides a good approximation in the position accuracy.

  • PDF

Use of Crown Feature Analysis to Separate the Two Pine Species in QuickBird Imagery

  • Kim, Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.267-272
    • /
    • 2008
  • Tree species-specific estimates with spacebome high-resolution imagery improve estimation of forest biomass which is needed to predict the long term planning for the sustainable forest management(SFM). This paper is a contribution to develop crown distinguishing coniferous species, Pinus densiflora and Pinus koraiensis, from QuickBird imagery. The proposed feature analysis derived from shape parameters and first and second-order statistical texture features of the same test area were compared for the two species separation and delineation. As expected, initial studies have shown that both formfactor and compactness shape parameters provided the successful differentiating method between the pine species within the compartment for single crown identification from spaceborne high resolution imagery. Another result revealed that the selected texture parameters - the mean, variance, angular second moment(ASM) - in the infrared band image could produce good subset combination of texture features for representing detailed tree crown outline.

Neighborhood Correlation Image Analysis for Change Detection Using Different Spatial Resolution Imagery

  • Im, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.337-350
    • /
    • 2006
  • The characteristics of neighborhood correlation images for change detection were explored at different spatial resolution scales. Bi-temporal QuickBird datasets of Las Vegas, NV were used for the high spatial resolution image analysis, while bi-temporal Landsat $TM/ETM^{+}$ datasets of Suwon, South Korea were used for the mid spatial resolution analysis. The neighborhood correlation images consisting of three variables (correlation, slope, and intercept) were evaluated and compared between the two scales for change detection. The neighborhood correlation images created using the Landsat datasets resulted in somewhat different patterns from those using the QuickBird high spatial resolution imagery due to several reasons such as the impact of mixed pixels. Then, automated binary change detection was also performed using the single and multiple neighborhood correlation image variables for both spatial resolution image scales.

Comparative Analysis of Image Fusion Methods According to Spectral Responses of High-Resolution Optical Sensors (고해상 광학센서의 스펙트럼 응답에 따른 영상융합 기법 비교분석)

  • Lee, Ha-Seong;Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This study aims to evaluate performance of various image fusion methods based on the spectral responses of high-resolution optical satellite sensors such as KOMPSAT-2, QuickBird and WorldView-2. The image fusion methods used in this study are GIHS, GIHSA, GS1 and AIHS. A quality evaluation of each image fusion method was performed with both quantitative and visual analysis. The quantitative analysis was carried out using spectral angle mapper index (SAM), relative global dimensional error (spectral ERGAS) and image quality index (Q4). The results indicates that the GIHSA method is slightly better than other methods for KOMPSAT-2 images. On the other hand, the GS1 method is suitable for Quickbird and WorldView-2 images.

Classification of tree species using high-resolution QuickBird-2 satellite images in the valley of Ui-dong in Bukhansan National Park

  • Choi, Hye-Mi;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • This study was performed in order to suggest the possibility of tree species classification using high-resolution QuickBird-2 images spectral characteristics comparison(digital numbers [DNs]) of tree species, tree species classification, and accuracy verification. In October 2010, the tree species of three conifers and eight broad-leaved trees were examined in the areas studied. The spectral characteristics of each species were observed, and the study area was classified by image classification. The results were as follows: Panchromatic and multi-spectral band 4 was found to be useful for tree species classification. DNs values of conifers were lower than broad-leaved trees. Vegetation indices such as normalized difference vegetation index (NDVI), soil brightness index (SBI), green vegetation index (GVI) and Biband showed similar patterns to band 4 and panchromatic (PAN); Tukey's multiple comparison test was significant among tree species. However, tree species within the same genus, such as $Pinus$ $densiflora-P.$ $rigida$ and $Quercus$ $mongolica-Q.$ $serrata$, showed similar DNs patterns and, therefore, supervised classification results were difficult to distinguish within the same genus; Random selection of validation pixels showed an overall classification accuracy of 74.1% and Kappa coefficient was 70.6%. The classification accuracy of $Pterocarya$ $stenoptera$, 89.5%, was found to be the highest. The classification accuracy of broad-leaved trees was lower than expected, ranging from 47.9% to 88.9%. $P.$ $densiflora-P.$ $rigida$ and $Q.$ $mongolica-Q.$ $serrata$ were classified as the same species because they did not show significant differences in terms of spectral patterns.

AUTOMATIC 3D BUILDING INFORMATION EXTRACTION FROM A SINGLE QUICKBIRD IMAGE AND DIGITAL MAPS

  • Kim, Hye-Jin;Byun, Young-Gi;Choi, Jae-Wan;Han, You-Kyung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.238-242
    • /
    • 2007
  • Today's commercial high resolution satellite imagery such as that provided by IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Digital maps supply the most generally used GIS data probiding topography, road, and building information. Currently, the building information provided by digital maps is incompletely constructed for GIS applications due to planar position error and warped shape. We focus on extracting of the accurate building information including position, shape, and height to update the building information of the digital maps and GIS database. In this paper, we propose a new method of 3D building information extraction with a single high resolution satellite image and digital map. Co-registration between the QuickBird image and the 1:1,000 digital maps was carried out automatically using the RPC adjustment model and the building layer of the digital map was projected onto the image. The building roof boundaries were detected using the building layer from the digital map based on the satellite azimuth. The building shape could be modified using a snake algorithm. Then we measured the building height and traced the building bottom automatically using triangular vector structure (TVS) hypothesis. In order to evaluate the proposed method, we estimated accuracy of the extracted building information using LiDAR DSM.

  • PDF

Qualification Test of ROCSAT -2 Image Processing System

  • Liu, Cynthia;Lin, Po-Ting;Chen, Hong-Yu;Lee, Yong-Yao;Kao, Ricky;Wu, An-Ming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1197-1199
    • /
    • 2003
  • ROCSAT-2 mission is to daily image over Taiwan and the surrounding area for disaster monitoring, land use, and ocean surveillance during the 5-year mission lifetime. The satellite will be launched in December 2003 into its mission orbit, which is selected as a 14 rev/day repetitive Sun-synchronous orbit descending over (120 deg E, 24 deg N) and 9:45 a.m. over the equator with the minimum eccentricity. National Space Program Office (NSPO) is developing a ROCSAT-2 Image Processing System (IPS), which aims to provide real-time high quality image data for ROCSAT-2 mission. A simulated ROCSAT-2 image, based on Level 1B QuickBird Data, is generated for IPS verification. The test image is comprised of one panchromatic data and four multispectral data. The qualification process consists of four procedures: (a) QuickBird image processing, (b) generation of simulated ROCSAT-2 image in Generic Raw Level Data (GERALD) format, (c) ROCSAT-2 image processing, and (d) geometric error analysis. QuickBird standard photogrammetric parameters of a camera that models the imaging and optical system is used to calculate the latitude and longitude of each line and sample. The backward (inverse model) approach is applied to find the relationship between geodetic coordinate system (latitude, longitude) and image coordinate system (line, sample). The bilinear resampling method is used to generate the test image. Ground control points are used to evaluate the error for data processing. The data processing contains various coordinate system transformations using attitude quaternion and orbit elements. Through the qualification test process, it is verified that the IPS is capable of handling high-resolution image data with the accuracy of Level 2 processing within 500 m.

  • PDF