• Title/Summary/Keyword: Queue Clearance Time

Search Result 6, Processing Time 0.022 seconds

A Study on Real Time Signal Metering Operation at Roundabouts by Considering Queue Clearance Time (대기행렬 소거시간을 고려한 회전교차로 실시간 신호미터링 운영 연구)

  • Lee, Sol;Ahn, Woo-Young;Lee, Seonha;Cho, Han-Seon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.133-143
    • /
    • 2018
  • Roundabouts are generally installed at which traffic and pedestrian volume is relatively small intersections, and hence traffic can flow one direction around a circular island without traffic lights. A number of researches for roundabout signal metering have been processing ways to deal with operation efficiency drops in conditions of unusual traffic and pedestrian volume increases. However, there is still a shortcoming exists in previous operation algorithm does not consider the hidden vehicles between yield lines and detectors and queueing vehicles in circular lanes. These queueing vehicles between them can be cleared by introducing the queue clearance time. The purpose of this research is developing a real time signal metering operation algorithm by considering the vehicle queue clearance time. The results of varying queue clearance time application show that there is a substantial average vehicle delay reduction in VISSIM Com-Interface simulation. When the total number of entering vehicle is 3,200~4,800 vehicle/hour with varying queue clearance time application 21~50 seconds gives average delay reduction per vehicle by 16.1~71.7%.

Development of Signal Control Strategy for Oversaturated Intersections Using Wayside Video Equipment (노변영상장비를 활용한 과포화 신호제어전략 개발)

  • Lee, Hyun;Kim, Won-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.11-21
    • /
    • 2013
  • The conventional real-time signal control strategy for oversaturated situation generally requires a number of detectors at the intersection in order to identify the queue length at each approach. Also, existing strategy for the spillback has limited effect due to the temporal spillback control which only reduce the green split at the approach. In this study, a signal control system utilizing the imagery information from ITS roadside equipment is developed for operation of oversaturated intersections. The strategy calculates the saturation ratio based on the queue length extracted from ITS RSE, and designs the signal control variables according to the saturation ratio. The signal control strategy is divided into two phases: oversaturated and supersaturated. In oversaturated conditions, timing plan for main approach is optimized by the queue length. In oversaturated conditions where spillback might occur, the signal timing is designed in order to avoid the spillback. To increase field adaptability, the strategy is designed to adjust the split length, all-red-time, and clearance time, and keep the major signal control variables intact. The result of the simulation shows that in oversaturated conditions, the improvement is similar to the real-time signal control system. In case of, oversaturated conditions, however, the effect of the strategy is superior to that of a real-time system.

One-Snapshot Algorithm for Secure Transaction Management in Electronic Stock Trading Systems (전자 주식 매매 시스템에서의 보안 트랜잭션 관리를 위한 단일 스냅샷 알고리즘)

  • 김남규;문송천;손용락
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.209-224
    • /
    • 2003
  • Recent development of electronic commerce enables the use of Electronic Stock Trading Systems(ESTS) to be expanded. In ESTS, information with various sensitivity levels is shared by multiple users with mutually different clearance levels. Therefore, it is necessary to use Multilevel Secure Database Management Systems(MLS/DBMSs) in controlling concurrent execution among multiple transactions. In ESTS, not only analytical OLAP transactions, but also mission critical OLTP transactions are executed concurrently, which causes it difficult to adapt traditional secure transaction management schemes to ESTS environments. In this paper, we propose Secure One Snapshot(SOS) protocol that is devised for Secure Transaction Management in ESTS. By maintaining additional one snapshot as well as working database SOS blocks covert-channel efficiently, enables various real-time transaction management schemes to be adapted with ease, and reduces the length of waiting queue being managed to maintain freshness of data by utilizing the characteristics of less strict correctness criteria. In this paper, we introduce the process of SOS protocol with some examples, and then analyze correctness of devised protocol.

A Study on Improvement of Run-Time in KS-SIGNAL, Traffic Signal Optimization Model for Coordinated Arterials (간선도로 연동화 신호최적화 모형 KS-SIGNAL의 수행속도 향상을 위한 연구)

  • 박찬호;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.7-18
    • /
    • 2000
  • KS-SIGNAL, a traffic signal optimization model for coordinated arterials, is an optimization model using the mixed integer linear Programming that minimizes total delay on arterials by optimizing left-turn Phase sequences. However, the Previous version of KS-SIGNAL had a difficulty in reducing computation speed because the related variables and constraints multiply rapidly in accordance with the increase of intersections. This study is designed to propose a new model, improving optimizing computation speed in KS-SIGMAl, and evaluate it. This Paper Puts forth three kinds of methodological approaches as to achieve the above goals. At the first step to reduce run-time in the proposed model objective function and a few constraints are Partially modified, which replaces variable in related to queue clearance time with constant, by using thru-movements at upstream intersection and the length of red time at downstream intersection. The result shows that the run-time can be reduced up to 70% at this step. The second step to load the library in LINDO for Windows, in order to solve mixed integer linear programming. The result suggests that run-time can be reduced obviously up to 99% of the first step result. The third step is to add constraints in related to left-turn Phase sequences. The proposed methodological approach, not optimizing all kinds of left-turn sequences, is more reasonable than that of previous model , only in the view of reducing run-tim. In conclusion, run-time could be reduced up to 30% compared with the second results. This Proposed model was tested by several optimization scenarios. The results in this study reveals that signal timing plan in KS-SIGNAL is closer to PASSER-II (bandwidth maximizing model) rather than to TRANSYT-7F(delay minimizing model).

  • PDF

A Signal Optimization Model Integrating Traffic Movements and Pedestrian Crossings (차량과 보행자 동시신호최적화모형 개발 연구)

  • Shin, Eon-Kyo;Kim, Ju-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.131-137
    • /
    • 2004
  • Conventional traffic signal optimization models assume that green intervals for pedestrian crossings are given as exogenous inputs such as minimum green intervals for straight-ahead movements. As the result, in reality, the green intervals of traffic movements may not distribute adequately by the volume/saturation-flow of them. In this paper, we proposed signal optimization models formulated in BMILP to integrate pedestrian crossings into traffic movements under under-saturated traffic flow. The model simultaneously optimizes traffic and pedestrian movements to minimize weighted queues of primary queues during red interval and secondary queues during queue clearance time. A set of linear objective function and constraints set up to ensure the conditions with respect to pedestrian and traffic maneuvers. Numerical examples are given by pedestrian green intervals and the number of pedestrian crossings located at an arm. Optimization results illustrated that pedestrian green intervals using proposed models are greater than those using TRANSYT-7F, but opposite in the ratios of pedestrian green intervals to the cycle lengths. The simulation results show that proposed models are superior to TRANSYT-7F in reducing delay, where the longer the pedestrian green interval the greater the effect.