지식iN과 같은 사용자 참여 질의응답 커뮤니티에서 원하는 질문에 대한 답을 찾기 위해서는 검색 결과로 제공되는 다양한 문서를 일일이 확인하여 판단하는 과정이 필요하다. 만일 사용자가 원하는 답변을 자동으로 정제하여 제시할 수 있다면, 질의응답의 사용성이 크게 향상될 수 있다. 본 논문에서는 질의응답 데이터 분석을 통해 사용자의 질문의 유형을 단어, 목록, 도표, 글의 4가지 유형으로 분류하고, 문서 내 통계적 특성을 활용하여 각 분류별 답변을 자동으로 제시하기 위한 방식을 제안한다. 단어, 목록, 글 유형은 질의어에 대해 검색된 질문을 군집화하고, 군집 내 빈도와 질의어에 대한 근접도, 답변 신뢰도 등으로 계산된 답변 내 어휘의 적합도를 활용하여 요약한 답변을 사용자에게 제시한다. 도표형은 답변들에서 사용자의 의견 정보를 추출하여 의견 통계를 도표로 제시한다.
A question answering (QA) system can be built using multiple QA modules that can individually serve as a QA system in and of themselves. This paper proposes a learnable, strategy-driven QA model that aims at enhancing both efficiency and effectiveness. A strategy is learned using a learning-based classification algorithm that determines the sequence of QA modules to be invoked and decides when to stop invoking additional modules. The learned strategy invokes the most suitable QA module for a given question and attempts to verify the answer by consulting other modules until the level of confidence reaches a threshold. In our experiments, our strategy learning approach obtained improvement over a simple routing approach by 10.5% in effectiveness and 27.2% in efficiency.
질의응답(Question Answering) 시스템은 질의에서 요구하는 정답 유형(Answer type) 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 흑은 다른 문법적 정보를 가진 카테고리에 등장하여 정답 추출에 어려움이 따른다. 만약, 질의에서 요구하는 정보유형을 보다 깊게 세분화하고, 세분화된 질의 유형과 개념적으로 유사한 문장을 대상으로 정답 추출을 수행할 수 있다면 보다 정확한 정답을 추출할 수 있을 것이다. 따라서, 본 논문은 심층 질의 카테고리의 개념 커버리지에 기반한 효과적인 의미적 질의 확장 방법론을 제안한다. 질의에서 요구하는 정보 유형을 보다 세분화된 심충 질의 카테고리로 나누고, 이러한 심층 질의 카테고리를 표현하기 위해 동원되는 어휘 집합에 질의 확장을 적용함으로써 정답 추출의 성능을 향상시키고자 하였다. 제안된 시스템의 성능 평가를 위하여, TREC 문서 중 1991년도 WSJ(Wall Street Journal) 42,654건과 TREC-9의 질의를 대상으로 실험한 결과 질의 확장을 수행하지 않는 시스템의 경우 MRR(Mean reciprocal ratio) 측정에서 0.223의 결과를 보인 반면 제안된 시스템의 경우 0.50의 향상된 결과를 보였다.
Jabalameli, Mehdi;Nematbakhsh, Mohammadali;Zaeri, Ahmad
ETRI Journal
/
제42권2호
/
pp.239-246
/
2020
Recently, Linked Open Data has become a large set of knowledge bases. Therefore, the need to query Linked Data using question answering (QA) techniques has attracted the attention of many researchers. A QA system translates natural language questions into structured queries, such as SPARQL queries, to be executed over Linked Data. The two main challenges in such systems are lexical and semantic gaps. A lexical gap refers to the difference between the vocabularies used in an input question and those used in the knowledge base. A semantic gap refers to the difference between expressed information needs and the representation of the knowledge base. In this paper, we present a novel method using an ontology lexicon and dependency parse trees to overcome lexical and semantic gaps. The proposed technique is evaluated on the QALD-5 benchmark and exhibits promising results.
커뮤니티 기반 질의 응답 시스템은 사용자 질의에 대한 정답을 인터넷 커뮤니티에 사용자들이 게시했던 문서 중에서 선택하여 제공하는 시스템이다. 기존 방법들은 질의 분석의 성능 향상을 위하여 목적 영역에 적합한 규칙을 구축하거나 일부 처리 과정에 기계 학습을 적용하였다. 하지만 기존 방법들은 적용 영역을 확장하거나 수정하는 경우 많은 비용이 소요되며 경우에 따라서는 시스템이 특정 영역에 과적합되는 경우가 발생한다. 본 논문에서는 커뮤니티 기반 질의-응답 시스템의 효과적인 처리를 위해서 시스템의 각 과정에 적합한 기계 학습 방법을 적용하여 전체 과정을 자동화하는 다중 기계학습 방법을 제안한다. 제안 시스템은 사용자 질의를 분석하는 부분과 정답 문서를 선택하는 부분으로 나눌 수 있다. 질의 분석 과정은 질의의 초점 구문을 분석하는 질의 핵심부 추출기와 질의의 주제를 분류하는 질의 유형 분류기로 구성하였으며, 전자는 조건부 무작위장을 사용하고 후자는 지지 벡터 기계를 사용한다. 정답 문서 선택에서는 유사도 측정에서 사용하는 가중치를 인공 신경망으로 학습한다. 또한 인터넷에 커뮤니티에 게시된 데이터는 형태소 분석 결과를 신뢰할 수 없는 경우가 많이 발생한다. 따라서 음절 자질을 사용하여 질의를 분석 단계에서 형태소 분석의 영향을 최소화하는 방법을 제안한다. 제안하는 시스템은 Mean Average Precision 기준으로 0.765, R-Precision 기준으로 0.872의 성능을 보여 기존 시스템보다 성능이 우수하다.
Dutta, Ashit Kumar;Wahab sait, Abdul Rahaman;Keshta, Ismail Mohamed;Elhalles, Abheer
International Journal of Computer Science & Network Security
/
제21권11호
/
pp.199-206
/
2021
Rhetorical relations between two text fragments are essential information and support natural language processing applications such as Question - Answering (QA) system and automatic text summarization to produce an effective outcome. Question - Answering (QA) system facilitates users to retrieve a meaningful response. There is a demand for rhetorical relation based datasets to develop such a system to interpret and respond to user requests. There are a limited number of datasets for developing an Arabic QA system. Thus, there is a lack of an effective QA system in the Arabic language. Recent research works reveal that unsupervised learning can support the QA system to reply to users queries. In this study, researchers intend to develop a rhetorical relation based dataset for implementing unsupervised learning applications. A web crawler is developed to crawl Arabic content from the web. A discourse-annotated corpus is generated using the rhetorical structural theory. A Naïve Bayes based QA system is developed to evaluate the performance of datasets. The outcome shows that the performance of the QA system is improved with proposed dataset and able to answer user queries with an appropriate response. In addition, the results on fine-grained and coarse-grained relations reveal that the dataset is highly reliable.
질의 응답 시스템은 사용자의 질의를 분석하여 제한된 길이의 정답을 제시해 주는 시스템이다. 질의 응답 시스템은 정확한 정답을 추출하기 위해 사용자의 질의를 분석하는 과정을 필요로 한다. 본 논문에서는 초점단어(focus-word)를 이용한 질의분석을 제안한다. 초점단어란 정답유형을 결정하는데 단서가 되는 단어로써, 추출된 초점단어에 의해 75개의 하위정답유형 중 하나가 결정된다. 실험에는 학습 데이터의 일부와 일반 Web에서 수집한 테스트 데이터가 사용되었다. 실험결과 상위범주는 97.18%, 하위범주는 95.31%의 정확도를 보였다.
질의응답시스템을 구축하는데 있어서 사용자 질의로 입력된 자연어 문장을 문법적 또는 의미적으로 완벽하게 분석하는 작업과 그 질의에 대한 정확한 답변을 찾아내는 작업은 쉬운 일이 아니다. 본 논문에서는 질의응답시스템 구축의 난제를 극복하기 위해, 문서 말뭉치에 기반하여 질의문을 자동 생성, 저장하여 이를 키워드로 검색하는 새로운 방식의 시스템을 제안한다. 질의문 생성을 위한 기본 아이디어는 수집 문서의 주요 문장에 대해 고유명사인식 기술을 활용하여 사람, 사물, 장소, 시간 등의 고유명사를 인식한 후, 각 고유명사에 해당하는 자연어 질의문을 생성하는 것이다. 질의문은 두가지 유형인 단순형 및 문장구조유지형 질의문으로 구분한다. 시스템은 이렇게 준비된 질의문 데이터베이스를 가지고 입력된 검색 키워드에 대하여 관련 질의문과 답변을 쉽게 얻을 수 있다. 본 연구의 관건은 생성된 질의문이 명확한 해답을 도출할 수 있는 의미있는 질의문을 생성하는 것이다. 이를 위해 본 연구에서는 질의문의 원천이 되는 평서문장을 선별하는 원칙과 선별된 평서문으로부터 의미있는 질의문을 생성하는 방법론을 제시한다.
질의응답 시스템에서의 질의 분석 과정은 이용자의 자연어 질의 문장에서 질의 의도를 파악하여 그 유형을 분류하고 정답 추출을 위한 정보를 구하는 것이다. 본 연구에서는 복잡한 분류 규칙 집합이나 대용량의 언어 지식 자원 대신 이용자 질의 문장에서 질의 초점 어휘를 추출하고 구문 구조적으로 관련된 단어들의 의미 정보에 기반하여 효율적으로 질의 유형을 분류하는 방법을 제안한다. 질의 초점 어휘가 생략된 경우의 처리와 동의어와 접미사 정보를 이용하여 질의 유형 분류 성능을 향상시킬 수 있는 방법도 제안한다.
인간이 서로 통신하는 가장 일반적인 방법은 자연어로 말하거나 글로 나타내는 방법이다.그러나 현재 기술로는 컴퓨터를 사용하려면 인위적인 프로그램밍 언어를 별도로 습득하여만 한다.만약 컴퓨터가 사람들이 말하거나 또는 글로 나타낸 자연어들을 이해할 수 있다면 사람들은 월씬 더 쉽고 자연스럽게 컴퓨터를 사용하게 될 것이다. 그러나 여기서의 문제점은 인간이 사용하는 언어가 많은 경우에 애매 모호하다는 것이다.예를 들어 '키큰'혹은 '젊은'과 같은 주관적 느낌을 표현하는 단어를 기존의 컴퓨터 시스템에서는 처리할 수없어,오히려 '25세이상'과 같이 정확한 조건을 명시해야만 원하는 정보를 얻을수 있다.본 연구에서는 이와 같은 fuzzy 정보를 포함하는 문장을 처리할수 있는 지식 기반형 자연어 질의 응답 시스템 개발을 목표로 블랙보드 개념을 도입하고 있다.이러한 시스템을 개발하려는 목표는 임의의 데이타베이스 시스템 및 음성 이해 시스템을 연결사용이 가능한 portable질의 응답 시스템을 개발하려는데 있다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.