• Title/Summary/Keyword: Question Routing

Search Result 14, Processing Time 0.018 seconds

A Study on Mapping Users' Topic Interest for Question Routing for Community-based Q&A Service (커뮤니티 기반 Q&A서비스에서의 질의 할당을 위한 이용자의 관심 토픽 분석에 관한 연구)

  • Park, Jong Do
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.3
    • /
    • pp.397-412
    • /
    • 2015
  • The main goal of this study is to investigate how to route a question to some relevant users who have interest in the topic of the question based on users' topic interest. In order to assess users' topic interest, archived question-answer pairs in the community were used to identify latent topics in the chosen categories using LDA. Then, these topic models were used to identify users' topic interest. Furthermore, the topics of newly submitted questions were analyzed using the topic models in order to recommend relevant answerers to the question. This study introduces the process of topic modeling to investigate relevant users based on their topic interest.

Investigating Factors Affecting Automated Question Triage for Social Reference: A Study of Adopting Decision Factors from Digital Reference

  • Park, Jong Do
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.49 no.1
    • /
    • pp.483-511
    • /
    • 2015
  • The efficiency and quality of the social reference sites are being challenged because a large quantity of the questions have not been answered or satisfied for quite a long time. Main goal of this study is to investigate important factors that affect the performance of question triage to relevant answerers in the context of social reference. To achieve the goal, expert finding techniques were used to construct an automated question triage approach to resolve this problem. Furthermore, important factors affecting triage decisions in digital reference were first examined, and extended them to the social reference setting by investigating important factors affecting the performance of automated question triage in the social reference setting. The study was conducted using question-answer pairs collected from Ask Metafilter. For the evaluation, logistic regression analyses were conducted to examine which factors would significantly affect the performance of predicting relevant answerers to questions. The results of the current study have important implications for research and practice in automated question triage for social reference. Furthermore, the results will offer insights into designing user-participatory digital reference systems.

Enhancing Performance with a Learnable Strategy for Multiple Question Answering Modules

  • Oh, Hyo-Jung;Myaeng, Sung-Hyon;Jang, Myung-Gil
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.419-428
    • /
    • 2009
  • A question answering (QA) system can be built using multiple QA modules that can individually serve as a QA system in and of themselves. This paper proposes a learnable, strategy-driven QA model that aims at enhancing both efficiency and effectiveness. A strategy is learned using a learning-based classification algorithm that determines the sequence of QA modules to be invoked and decides when to stop invoking additional modules. The learned strategy invokes the most suitable QA module for a given question and attempts to verify the answer by consulting other modules until the level of confidence reaches a threshold. In our experiments, our strategy learning approach obtained improvement over a simple routing approach by 10.5% in effectiveness and 27.2% in efficiency.

Optimizing Network Lifetime of RPL Based IOT Networks Using Neural Network Based Cuckoo Search Algorithm

  • Prakash, P. Jaya;Lalitha, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.255-261
    • /
    • 2022
  • Routing Protocol for Low-Power and Lossy Networks (RPLs) in Internet of Things (IoT) is currently one of the most popular wireless technologies for sensor communication. RPLs are typically designed for specialized applications, such as monitoring or tracking, in either indoor or outdoor conditions, where battery capacity is a major concern. Several routing techniques have been proposed in recent years to address this issue. Nevertheless, the expansion of the network lifetime in consideration of the sensors' capacities remains an outstanding question. In this research, aANN-CUCKOO based optimization technique is applied to obtain a more efficient and dependable energy efficient solution in IOT-RPL. The proposed method uses time constraints to minimise the distance between source and sink with the objective of a low-cost path. By considering the mobility of the nodes, the technique outperformed with an efficiency of 98% compared with other methods. MATLAB software is used to simulate the proposed model.

Information Sharing System Based on Ontology in Wireless Internet (무선 인터넷 환경에서의 온톨로지 기반 정보 공유 시스템)

  • 노경신;유영훈;조근식
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.133-136
    • /
    • 2003
  • Due to recent explosion of information available online, question- answering (Q&A) systems are becoming a compelling framework for finding relevant information in a variety of domains. Question-answering system is one of the best ways to introduce a novice customer to a new domain without making him/her to obtain prior knowledge of its overall structure improving search request with specific answer. However, the current web poses serious problem for finding specific answer for many overlapped meanings for the same questions or duplicate questions also retrieved answer for many overlapped meanings fer the same questions or duplicate questions also retrieved answer is slow due to enhanced network traffic, which leads to wastage of resource. In order to avoid wrong answer which occur due to above-mentioned problem we propose the system using ontology by RDF, RDFS and mobile agent based on JAVA. We also choose wireless internet based embedded device as our test bed for the system and apply the system in E-commerce information domain. The mobile agent provides agent routing with reduced network traffic, consequently helps us to minimize the elapsed time for answers and structured ontology based on our proposed algorithms sorts out the similarity between current and past question by comparing properties of classes.

  • PDF

Automatic Categorization of Islamic Jurisprudential Legal Questions using Hierarchical Deep Learning Text Classifier

  • AlSabban, Wesam H.;Alotaibi, Saud S.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.281-291
    • /
    • 2021
  • The Islamic jurisprudential legal system represents an essential component of the Islamic religion, that governs many aspects of Muslims' daily lives. This creates many questions that require interpretations by qualified specialists, or Muftis according to the main sources of legislation in Islam. The Islamic jurisprudence is usually classified into branches, according to which the questions can be categorized and classified. Such categorization has many applications in automated question-answering systems, and in manual systems in routing the questions to a specialized Mufti to answer specific topics. In this work we tackle the problem of automatic categorisation of Islamic jurisprudential legal questions using deep learning techniques. In this paper, we build a hierarchical deep learning model that first extracts the question text features at two levels: word and sentence representation, followed by a text classifier that acts upon the question representation. To evaluate our model, we build and release the largest publicly available dataset of Islamic questions and answers, along with their topics, for 52 topic categories. We evaluate different state-of-the art deep learning models, both for word and sentence embeddings, comparing recurrent and transformer-based techniques, and performing extensive ablation studies to show the effect of each model choice. Our hierarchical model is based on pre-trained models, taking advantage of the recent advancement of transfer learning techniques, focused on Arabic language.

Popularity-Based Adaptive Content Delivery Scheme with In-Network Caching

  • Kim, Jeong Yun;Lee, Gyu Myoung;Choi, Jun Kyun
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.819-828
    • /
    • 2014
  • To solve the increasing popularity of video streaming services over the Internet, recent research activities have addressed the locality of content delivery from a network edge by introducing a storage module into a router. To employ in-network caching and persistent request routing, this paper introduces a hybrid content delivery network (CDN) system combining novel content routers in an underlay together with a traditional CDN server in an overlay. This system first selects the most suitable delivery scheme (that is, multicast or broadcast) for the content in question and then allocates an appropriate number of channels based on a consideration of the content's popularity. The proposed scheme aims to minimize traffic volume and achieve optimal delivery cost, since the most popular content is delivered through broadcast channels and the least popular through multicast channels. The performance of the adaptive scheme is clearly evaluated and compared against both the multicast and broadcast schemes in terms of the optimal in-network caching size and number of unicast channels in a content router to observe the significant impact of our proposed scheme.

BGP Decision Making Process and Open Problem Analysis (경계선 게이트웨이 프로토콜의 의사 결정 속성과 공개된 문제점 분석)

  • Lee, Kang-Won;Ham, Young-Marn
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.81-97
    • /
    • 2012
  • The objective of this paper is to investigate the 'state of the art' of the interdomain routing protocol BGP. First, BGP is critically reviewed focusing on the BGP policy and decision making process. And then the problems which still remain as open questions are investigated in the areas of 1) protocol stability, 2) traffic engineering and 3) quality of service. The recent research trend to answer the open questions is discussed.

Dynamic Network Provisioning for Time-Varying Traffic

  • Sharma, Vicky;Kar, Koushik;La, Richard;Tassiulas, Leandros
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.408-418
    • /
    • 2007
  • In this paper, we address the question of dynamic network provisioning for time-varying traffic rates, with the objective of maximizing the system throughput. We assume that the network is capable of providing bandwidth guaranteed traffic tunnels for an ingress-egress pair and present an approach that (1) updates the tunnel routes and (2) adjusts the tunnel bandwidths, in an incremental, adaptive manner, based on the variations in the incoming traffic. First, we consider a simpler scenario where tunnel routes are fixed, and present an approach for adjusting the tunnel bandwidths dynamically. We show, through simulations, that our dynamic bandwidth assignment algorithm significantly outperforms the optimal static bandwidth provisioning policy, and yields a performance close to that of the optimal dynamic bandwidth provisioning policy. We also propose an adaptive route update algorithm, which can be used in conjunction with our dynamic bandwidth assignment policy, and leads to further improvement in the overall system performance.

An Automatic Question Routing System using Machine Learning (기계학습 기법을 이용한 전자게시판 질문 자동 분류)

  • 최형림;류광렬;강재호;신종일;이창섭
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.313-318
    • /
    • 2003
  • 인터넷의 급격한 발전과 광범위한 보급에 따라 과거 전화, 서신 또는 직접방문을 통하여 해결하던 고객상담의 상당부분은 인터넷을 이용한 전자우편 및 전자게시판을 이용하는 방향으로 꾸준히 대치되고 있다. 인터넷을 통한 고객과의 접촉방식의 대부분을 차지하는 전자우편과 전자게시판은, 기존의 방식 특히 전화에 비하여 즉각적인 응답을 기대하기가 어렵다는 측면이 고객에게는 가장 큰 불만사항이 되고 있다. 본 논문에서는 문서로 이루어진 전자우편 또는 전자게시판의 고객 상담 내용을 기계학습의 분류기법을 활용하여 담당자를 자동으로 선정함으로써 보다 신속히 고객의 요구에 반응할 수 있는 효과적인 방법을 제안한다. 실제 수집한 다년간의 데이터를 기반으로 다양한 분류기법의 성능을 비교 평가하였으며, 그 결과 k-NN을 이용한 기법이 성능 및 활용도 측면에서 유리함을 보였다 또한, 인터넷을 통한 질문의 경우 상당 수준의 오탈자 및 띄어쓰기 오류를 내포하고 있는데, 바이그램을 이용한 문서처리방법을 이용함으로써 이러한 상황에 효과적으로 대처할 수 있으며, 바이그램으로 문서 처리 시 발생할 수 있는 시스템의 부담을 큰 성능의 저하 없이 최소화하기 위하여 자주 등장한 단어만을 선정하는 방안이 실용성이 있음을 확인하였다.

  • PDF