• 제목/요약/키워드: Query expansion

검색결과 131건 처리시간 0.018초

유사 단어 커뮤니티 기반의 질의 확장 (Query Expansion based on Word Sense Community)

  • 곽창욱;윤희근;박성배
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1058-1065
    • /
    • 2014
  • 질의 확장은 입력된 질의와 관련된 키워드를 사용자에게 제시하여 검색 활동에 도움을 주는 방법이다. 최근에는 사용자가 검색한 내용에서 군집화 방법을 이용하여 도메인을 찾고 키워드를 제시하는 연구가 많이 이루어졌다. 하지만 군집화 방법은 군집의 개수를 정해야하기 때문에 다양한 도메인을 나타내는데 적절하지 않다. 따라서 본 논문은 커뮤니티 인지 알고리즘으로 검색 문서에서 질의마다 다양한 수의 도메인을 찾고 키워드로 선택하여 제시하는 방법을 제안한다. 이를 위해 사용자가 검색한 결과 중 상위 30개 문서를 대상으로 단어를 추출하여 그래프 기반의 커뮤니티를 만들고, 각 커뮤니티에서 키워드를 추출하여 이를 질의 확장에 이용하였다. 본 논문에서 제안한 방법은 구글 검색 엔진과 검색된 문서의 tf-idf를 이용한 키워드 추천 방법과 비교하였다. 제안한 방법이 다른 비교 대상들에 비해 더 다양한 키워드를 추천할 수 있었다.

문서필터링을 위한 질의어 확장과 가중치 부여 기법 (Query Expansion and Term Weighting Method for Document Filtering)

  • 신승은;강유환;오효정;장명길;박상규;이재성;서영훈
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.743-750
    • /
    • 2003
  • 본 논문에서는 문서 필터링을 위한 질의어 확장과 가중치 부여 기법을 제안한다. 문서 필터링은 웹 검색 엔진들에 대한 검색 결과의 정확률 향상을 목적으로 한다. 문서 필터링을 위한 질의어 확장은 개념망, 백과사전, 유사도 상위 10% 문서를 이용하며, 각각의 확장 질의어에 가중치를 부쳐하여 질의어와 문서들간의 유사도를 계산한다. 첫 번째 단계에서 개념망과 백과사전을 이용하여 초기 질의어에 대한 1차 확장 질의어를 생성하고, 1차 확장 질의엉 가중치를 부여하여 질의어와 문서들간의 유사도를 계산한다. 다음 단계에서는 높은 유사도를 갖는 상위 10% 문서들을 이용하여 2타 확장 질의어를 생성하고, 2차 확장 질의어에 가중치를 부쳐하여 질의어와 문서들간의 유사도를 계산한다. 다음으로 1차 유사도와 2차 유사도를 결합하여 문서들을 재순위화하고, 임계치보다 낮은 유사도를 갖는 문서들을 필터링함으로써 웹 검색 엔진들의 검색 결과 정확률을 향상시킨다. 실험에서 이러한 문서 필터링을 위한 질의어 확장과 가중치 부여 기법은 정확률-재현율과 F-measure를 이용하여 성능 평가를 할 때 정보 검색 효율성에서 주목할 만한 성능 향상을 보였다.

질의어 확장에 기반을 둔 클러스터링 및 필터링 문서의 검색효율 제고에 관한 연구 (A Study on the Improvement of Retrieval Effectiveness to Clustered and Filtered Document through Query Expansion)

  • 노동조
    • 한국비블리아학회지
    • /
    • 제14권1호
    • /
    • pp.219-230
    • /
    • 2003
  • 인터넷을 비롯한 대다수의 정보검색에서 사용자가 느끼는 공통된 어려움중의 하나는 검색결과가 너무 많다는 것이다. 본 연구는 검색결과를 줄이는 방법의 하나로써 검색 문헌에 대한 정제 방법에 대하여 논의한 것이다. 궁극적으로 종전의 검색시스템에서 제대로 고려하지 않은 개념망을 통한 질의어 확장과 확장 질의어와 전처리된 문서와의 유사도 측정을 통한 문서의 선택, 백과사전 정보에 의한 의미 확장과 클러스터링, 필터링 기법 등이 정보검색의 효율을 향상시키는데 효과적인 방안임을 제안한다.

  • PDF

주제를 깊이 있게 다루는 블로그 피드 검색을 위한 위키피디아 기반 질의 확장 방법 (A Wikipedia-based Query Expansion Method for In-depth Blog Distillation)

  • 송우상;이예하;이종혁;양기주
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권11호
    • /
    • pp.1121-1125
    • /
    • 2010
  • 본 논문에서는 질의로 주어진 주제를 깊이 있게 다루는 블로그 검색을 위한 위키피디아 기반 질의 확장 방법을 제안한다. 제안된 방법은 질의와 연관된 위키피디아 문서를 질의 확장에 사용한다. 실험을 위해 대규모 블로그 실험 데이터인 TREC Blogs08 collection과 영문 위키피디아 데이터를 사용하였다. 실험 결과 제안된 방법은 기존의 블로그 포스트 기반 질의 확장 방법에 비해 MAP을 비롯한 검색 성능을 콘 폭으로 향상시켰다.

온톨로지-DTD 정합에 의한 XML 질의 확장 (XML Query-Expansion by Ontology-DTD Match)

  • 김명숙;공용해
    • 정보처리학회논문지D
    • /
    • 제12D권5호
    • /
    • pp.773-780
    • /
    • 2005
  • XML 질의를 온톨로지 기반으로 확장하면 보다 폭넓은 정보검색이 가능해지는 반면에, 대상 문서의 구조에 부적합하게 확장된 질의들은 검색의 효율을 저하시킬 수 있다. 본 연구는 은톨로지와 대상 문서의 DTD를 정합한 결과인 축소된 온톨로지를 기반으로 질의를 확장함으로써 질의의 적합도를 향상시키는 방법을 제안한다. 온톨로지 개념과 DTD 엘리먼트 정합 및 온톨로지와 DTD 속성 정합에 의해 한번 축소된 온톨로지는 질의의 적중률을 높일 수 있을 뿐만 아니라 동일한 구조를 가지는 문서 집단에 재사용될 수 있으므로 검색의 효율을 향상시킬 수 있다.

질의 어휘와의 근접도를 반영한 단어 그래프 기반 질의 확장 (Query Expansion based on Word Graph using Term Proximity)

  • 장계훈;이경순
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.37-42
    • /
    • 2012
  • 잠정적 적합성 피드백모델은 초기 검색 결과의 상위에 순위화된 문서를 적합 문서라 가정하고, 상위문서에서 빈도가 높은 어휘를 확장 질의로 선택한다. 빈도수를 이용한 질의 확장 방법의 단점은 문서 안에서 포함된 어휘들 사이의 근접도에 상관없이 각 어휘를 독립적으로 생각한다는 것이다. 본 논문에서는 어휘빈도를 이용한 질의 확장을 대체할 수 있는 어휘 근접도를 반영한 단어 그래프 기반 질의 확장을 제안한다. 질의 어휘 주변에 발생한 어휘들을 노드로 표현하고, 어휘들 사이의 근접도를 에지의 가중치로 하여 단어 그래프를 표현한다. 반복된 연산을 통해 확장 질의를 선택함으로써 성능을 향상시키는 기법을 제안한다. 유효성 검증을 위해 웹문서 집합인 TREC WT10g 테스트 컬렉션에 대한 실험에서 언어모델 보다 MAP 평가 기준에서 6.4% 향상됨을 보였다.

TAKES: Two-step Approach for Knowledge Extraction in Biomedical Digital Libraries

  • Song, Min
    • Journal of Information Science Theory and Practice
    • /
    • 제2권1호
    • /
    • pp.6-21
    • /
    • 2014
  • This paper proposes a novel knowledge extraction system, TAKES (Two-step Approach for Knowledge Extraction System), which integrates advanced techniques from Information Retrieval (IR), Information Extraction (IE), and Natural Language Processing (NLP). In particular, TAKES adopts a novel keyphrase extraction-based query expansion technique to collect promising documents. It also uses a Conditional Random Field-based machine learning technique to extract important biological entities and relations. TAKES is applied to biological knowledge extraction, particularly retrieving promising documents that contain Protein-Protein Interaction (PPI) and extracting PPI pairs. TAKES consists of two major components: DocSpotter, which is used to query and retrieve promising documents for extraction, and a Conditional Random Field (CRF)-based entity extraction component known as FCRF. The present paper investigated research problems addressing the issues with a knowledge extraction system and conducted a series of experiments to test our hypotheses. The findings from the experiments are as follows: First, the author verified, using three different test collections to measure the performance of our query expansion technique, that DocSpotter is robust and highly accurate when compared to Okapi BM25 and SLIPPER. Second, the author verified that our relation extraction algorithm, FCRF, is highly accurate in terms of F-Measure compared to four other competitive extraction algorithms: Support Vector Machine, Maximum Entropy, Single POS HMM, and Rapier.

Survey of Automatic Query Expansion for Arabic Text Retrieval

  • Farhan, Yasir Hadi;Noah, Shahrul Azman Mohd;Mohd, Masnizah
    • Journal of Information Science Theory and Practice
    • /
    • 제8권4호
    • /
    • pp.67-86
    • /
    • 2020
  • Information need has been one of the main motivations for a person using a search engine. Queries can represent very different information needs. Ironically, a query can be a poor representation of the information need because the user can find it difficult to express the information need. Query Expansion (QE) is being popularly used to address this limitation. While QE can be considered as a language-independent technique, recent findings have shown that in certain cases, language plays an important role. Arabic is a language with a particularly large vocabulary rich in words with synonymous shades of meaning and has high morphological complexity. This paper, therefore, provides a review on QE for Arabic information retrieval, the intention being to identify the recent state-of-the-art of this burgeoning area. In this review, we primarily discuss statistical QE approaches that include document analysis, search, browse log analyses, and web knowledge analyses, in addition to the semantic QE approaches, which use semantic knowledge structures to extract meaningful word relationships. Finally, our conclusion is that QE regarding the Arabic language is subjected to additional investigation and research due to the intricate nature of this language.

질의확장을 이용한 자동 문서요약 (Automatic Text Summarization Using Query Expansion)

  • 한경수;백대호;임해창
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.339-341
    • /
    • 2000
  • 문서요약이란 문서의 기본적인 내용을 유지하면서 문서의 복잡도를 줄이는 작업이다. 인터넷과 같은 정보기술의 발달로 정보의 양이 급증함에 따라, 정보 과적재(information over load) 문제의 해결을 위해 자동 문서요약시스템의 필요성이 대두되었다. 본 논문에서는 의사 적합성 피드백(pseudo relevance feedback)에 의한 질의확장(query expansion) 기법을 적용한 자동 문서요약 모델을 제안한다. 제안하는 모델의 특징은 질의를 분해함으로써, 적합성 피드백 과정에서 질의가 편향(bias)되어 요약이 잘못되는 문제를 방지할 수 있다는 것이다. 신문기사를 대상으로 평가한 결과 제안한 모델이 질의확장을 적용하지 않은 방법이나 하나의 질의만을 유지하는 일반적인 적합성 피드백 모델보다 더 좋은 성능을 보였다.

  • PDF

잠정적 부적합 문서와 어휘 근접도를 반영한 어휘 그래프 기반 질의 확장 (Query Expansion Based on Word Graphs Using Pseudo Non-Relevant Documents and Term Proximity)

  • 조승현;이경순
    • 정보처리학회논문지B
    • /
    • 제19B권3호
    • /
    • pp.189-194
    • /
    • 2012
  • 본 논문에서는 정보검색 성능 향상을 위해 잠정적 적합 문서 및 부적합 문서와 어휘 그래프를 이용한 질의 확장 방법을 제안한다. 언어모델에 의한 초기 검색 결과 상위 문서들은 질의 어휘 조합과 근접도를 기반으로 핵심 질의를 포함하는 문서들로 구성된 핵심 질의 클러스터와 핵심 질의를 포함하지 않는 문서들로 구성된 비핵심 질의 클러스터로 분류된다. 이때, 핵심 질의 클러스터는 잠정적 적합 문서 집합으로, 비핵심 질의 클러스터는 잠정적 부적합 문서 집합으로 본다. 각 클러스터는 어휘들과 질의 어휘와의 가까운 정도에 따라 어휘 그래프로 표현된다. 각 어휘에 대한 중요도는 핵심 질의 클러스터 그래프에서의 어휘 가중치에서 비핵심 질의 클러스터 그래프에서의 어휘의 가중치를 빼서 계산한다. 이는 부적합 문서에서 높은 가중치를 갖는 어휘는 확장 질의에서 제외시키는 역할을 한다. 중요도가 높은 어휘 순으로 확장할 질의를 선택한다. 웹 문서 테스트컬렉션인 TREC WT10g에서의 실험 결과에서 제안 방법이 언어모델(LM)에 비해 평균 정확률의 평균(MAP)에서 9.4% 성능 향상을 보였다.