질의 확장은 입력된 질의와 관련된 키워드를 사용자에게 제시하여 검색 활동에 도움을 주는 방법이다. 최근에는 사용자가 검색한 내용에서 군집화 방법을 이용하여 도메인을 찾고 키워드를 제시하는 연구가 많이 이루어졌다. 하지만 군집화 방법은 군집의 개수를 정해야하기 때문에 다양한 도메인을 나타내는데 적절하지 않다. 따라서 본 논문은 커뮤니티 인지 알고리즘으로 검색 문서에서 질의마다 다양한 수의 도메인을 찾고 키워드로 선택하여 제시하는 방법을 제안한다. 이를 위해 사용자가 검색한 결과 중 상위 30개 문서를 대상으로 단어를 추출하여 그래프 기반의 커뮤니티를 만들고, 각 커뮤니티에서 키워드를 추출하여 이를 질의 확장에 이용하였다. 본 논문에서 제안한 방법은 구글 검색 엔진과 검색된 문서의 tf-idf를 이용한 키워드 추천 방법과 비교하였다. 제안한 방법이 다른 비교 대상들에 비해 더 다양한 키워드를 추천할 수 있었다.
본 논문에서는 문서 필터링을 위한 질의어 확장과 가중치 부여 기법을 제안한다. 문서 필터링은 웹 검색 엔진들에 대한 검색 결과의 정확률 향상을 목적으로 한다. 문서 필터링을 위한 질의어 확장은 개념망, 백과사전, 유사도 상위 10% 문서를 이용하며, 각각의 확장 질의어에 가중치를 부쳐하여 질의어와 문서들간의 유사도를 계산한다. 첫 번째 단계에서 개념망과 백과사전을 이용하여 초기 질의어에 대한 1차 확장 질의어를 생성하고, 1차 확장 질의엉 가중치를 부여하여 질의어와 문서들간의 유사도를 계산한다. 다음 단계에서는 높은 유사도를 갖는 상위 10% 문서들을 이용하여 2타 확장 질의어를 생성하고, 2차 확장 질의어에 가중치를 부쳐하여 질의어와 문서들간의 유사도를 계산한다. 다음으로 1차 유사도와 2차 유사도를 결합하여 문서들을 재순위화하고, 임계치보다 낮은 유사도를 갖는 문서들을 필터링함으로써 웹 검색 엔진들의 검색 결과 정확률을 향상시킨다. 실험에서 이러한 문서 필터링을 위한 질의어 확장과 가중치 부여 기법은 정확률-재현율과 F-measure를 이용하여 성능 평가를 할 때 정보 검색 효율성에서 주목할 만한 성능 향상을 보였다.
인터넷을 비롯한 대다수의 정보검색에서 사용자가 느끼는 공통된 어려움중의 하나는 검색결과가 너무 많다는 것이다. 본 연구는 검색결과를 줄이는 방법의 하나로써 검색 문헌에 대한 정제 방법에 대하여 논의한 것이다. 궁극적으로 종전의 검색시스템에서 제대로 고려하지 않은 개념망을 통한 질의어 확장과 확장 질의어와 전처리된 문서와의 유사도 측정을 통한 문서의 선택, 백과사전 정보에 의한 의미 확장과 클러스터링, 필터링 기법 등이 정보검색의 효율을 향상시키는데 효과적인 방안임을 제안한다.
본 논문에서는 질의로 주어진 주제를 깊이 있게 다루는 블로그 검색을 위한 위키피디아 기반 질의 확장 방법을 제안한다. 제안된 방법은 질의와 연관된 위키피디아 문서를 질의 확장에 사용한다. 실험을 위해 대규모 블로그 실험 데이터인 TREC Blogs08 collection과 영문 위키피디아 데이터를 사용하였다. 실험 결과 제안된 방법은 기존의 블로그 포스트 기반 질의 확장 방법에 비해 MAP을 비롯한 검색 성능을 콘 폭으로 향상시켰다.
XML 질의를 온톨로지 기반으로 확장하면 보다 폭넓은 정보검색이 가능해지는 반면에, 대상 문서의 구조에 부적합하게 확장된 질의들은 검색의 효율을 저하시킬 수 있다. 본 연구는 은톨로지와 대상 문서의 DTD를 정합한 결과인 축소된 온톨로지를 기반으로 질의를 확장함으로써 질의의 적합도를 향상시키는 방법을 제안한다. 온톨로지 개념과 DTD 엘리먼트 정합 및 온톨로지와 DTD 속성 정합에 의해 한번 축소된 온톨로지는 질의의 적중률을 높일 수 있을 뿐만 아니라 동일한 구조를 가지는 문서 집단에 재사용될 수 있으므로 검색의 효율을 향상시킬 수 있다.
잠정적 적합성 피드백모델은 초기 검색 결과의 상위에 순위화된 문서를 적합 문서라 가정하고, 상위문서에서 빈도가 높은 어휘를 확장 질의로 선택한다. 빈도수를 이용한 질의 확장 방법의 단점은 문서 안에서 포함된 어휘들 사이의 근접도에 상관없이 각 어휘를 독립적으로 생각한다는 것이다. 본 논문에서는 어휘빈도를 이용한 질의 확장을 대체할 수 있는 어휘 근접도를 반영한 단어 그래프 기반 질의 확장을 제안한다. 질의 어휘 주변에 발생한 어휘들을 노드로 표현하고, 어휘들 사이의 근접도를 에지의 가중치로 하여 단어 그래프를 표현한다. 반복된 연산을 통해 확장 질의를 선택함으로써 성능을 향상시키는 기법을 제안한다. 유효성 검증을 위해 웹문서 집합인 TREC WT10g 테스트 컬렉션에 대한 실험에서 언어모델 보다 MAP 평가 기준에서 6.4% 향상됨을 보였다.
Journal of Information Science Theory and Practice
/
제2권1호
/
pp.6-21
/
2014
This paper proposes a novel knowledge extraction system, TAKES (Two-step Approach for Knowledge Extraction System), which integrates advanced techniques from Information Retrieval (IR), Information Extraction (IE), and Natural Language Processing (NLP). In particular, TAKES adopts a novel keyphrase extraction-based query expansion technique to collect promising documents. It also uses a Conditional Random Field-based machine learning technique to extract important biological entities and relations. TAKES is applied to biological knowledge extraction, particularly retrieving promising documents that contain Protein-Protein Interaction (PPI) and extracting PPI pairs. TAKES consists of two major components: DocSpotter, which is used to query and retrieve promising documents for extraction, and a Conditional Random Field (CRF)-based entity extraction component known as FCRF. The present paper investigated research problems addressing the issues with a knowledge extraction system and conducted a series of experiments to test our hypotheses. The findings from the experiments are as follows: First, the author verified, using three different test collections to measure the performance of our query expansion technique, that DocSpotter is robust and highly accurate when compared to Okapi BM25 and SLIPPER. Second, the author verified that our relation extraction algorithm, FCRF, is highly accurate in terms of F-Measure compared to four other competitive extraction algorithms: Support Vector Machine, Maximum Entropy, Single POS HMM, and Rapier.
Journal of Information Science Theory and Practice
/
제8권4호
/
pp.67-86
/
2020
Information need has been one of the main motivations for a person using a search engine. Queries can represent very different information needs. Ironically, a query can be a poor representation of the information need because the user can find it difficult to express the information need. Query Expansion (QE) is being popularly used to address this limitation. While QE can be considered as a language-independent technique, recent findings have shown that in certain cases, language plays an important role. Arabic is a language with a particularly large vocabulary rich in words with synonymous shades of meaning and has high morphological complexity. This paper, therefore, provides a review on QE for Arabic information retrieval, the intention being to identify the recent state-of-the-art of this burgeoning area. In this review, we primarily discuss statistical QE approaches that include document analysis, search, browse log analyses, and web knowledge analyses, in addition to the semantic QE approaches, which use semantic knowledge structures to extract meaningful word relationships. Finally, our conclusion is that QE regarding the Arabic language is subjected to additional investigation and research due to the intricate nature of this language.
문서요약이란 문서의 기본적인 내용을 유지하면서 문서의 복잡도를 줄이는 작업이다. 인터넷과 같은 정보기술의 발달로 정보의 양이 급증함에 따라, 정보 과적재(information over load) 문제의 해결을 위해 자동 문서요약시스템의 필요성이 대두되었다. 본 논문에서는 의사 적합성 피드백(pseudo relevance feedback)에 의한 질의확장(query expansion) 기법을 적용한 자동 문서요약 모델을 제안한다. 제안하는 모델의 특징은 질의를 분해함으로써, 적합성 피드백 과정에서 질의가 편향(bias)되어 요약이 잘못되는 문제를 방지할 수 있다는 것이다. 신문기사를 대상으로 평가한 결과 제안한 모델이 질의확장을 적용하지 않은 방법이나 하나의 질의만을 유지하는 일반적인 적합성 피드백 모델보다 더 좋은 성능을 보였다.
본 논문에서는 정보검색 성능 향상을 위해 잠정적 적합 문서 및 부적합 문서와 어휘 그래프를 이용한 질의 확장 방법을 제안한다. 언어모델에 의한 초기 검색 결과 상위 문서들은 질의 어휘 조합과 근접도를 기반으로 핵심 질의를 포함하는 문서들로 구성된 핵심 질의 클러스터와 핵심 질의를 포함하지 않는 문서들로 구성된 비핵심 질의 클러스터로 분류된다. 이때, 핵심 질의 클러스터는 잠정적 적합 문서 집합으로, 비핵심 질의 클러스터는 잠정적 부적합 문서 집합으로 본다. 각 클러스터는 어휘들과 질의 어휘와의 가까운 정도에 따라 어휘 그래프로 표현된다. 각 어휘에 대한 중요도는 핵심 질의 클러스터 그래프에서의 어휘 가중치에서 비핵심 질의 클러스터 그래프에서의 어휘의 가중치를 빼서 계산한다. 이는 부적합 문서에서 높은 가중치를 갖는 어휘는 확장 질의에서 제외시키는 역할을 한다. 중요도가 높은 어휘 순으로 확장할 질의를 선택한다. 웹 문서 테스트컬렉션인 TREC WT10g에서의 실험 결과에서 제안 방법이 언어모델(LM)에 비해 평균 정확률의 평균(MAP)에서 9.4% 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.