• Title/Summary/Keyword: Query expansion

Search Result 131, Processing Time 0.023 seconds

Experimental Study for Effective Combination of Opinion Features (효과적인 의견 자질 결합을 위한 실험적 연구)

  • Han, Kyoung-Soo
    • Journal of the Korean Society for information Management
    • /
    • v.27 no.3
    • /
    • pp.227-239
    • /
    • 2010
  • Opinion retrieval is to retrieve items which are relevant to the user information need topically and include opinion about the topic. This paper aims to find a method to represent user information need for effective opinion retrieval and to analyze the combination methods for opinion features through various experiments. The experiments are carried out in the inference network framework using the Blogs06 collection and 100 TREC test topics. The results show that our suggested representation method based on hidden 'opinion' concept is effective, and the compact model with very small opinion lexicon shows the comparable performance to the previous model on the same test data set.

A Study on the Frequency Level Preference Tendency of Association Measures (연관성 척도의 빈도수준 선호경향에 대한 연구)

  • Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.4 s.54
    • /
    • pp.281-294
    • /
    • 2004
  • Association measures are applied to various applications, including information retrieval and data mining. Each association measure is subject to a close examination to its tendency to prefer high or low frequency level because it has a significant impact on the performance of applications. This paper examines the frequency level preference(FLP) tendency of some popular association measures using artificially generated cooccurrence data, and evaluates the results. After that, a method of how to adjust the FLP tendency of major association measures such as cosine coefficient is proposed. This method is tested on the cooccurrence-based query expansion in information retrieval and the result can be regarded as promising the usefulness of the method. Based on these results of analysis and experiment, implications for related disciplines are identified.

The Design and Implementation of Automatic Query Term Refiner for Term Expansion/Restriction in Information Retrieval (정보검색에서 질의 용어 확장/한정을 위한 자동 질의 용어 정련기의 설계 및 구현)

  • Kang, Hyun-Su;Kang, Hyun-Kyu;Lee, Yong-Seok;Kim, Young-Sum
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.65-72
    • /
    • 1998
  • 인터넷 정보 검색에서 이용자들이 주로 사용하는 질의는 2-3개의 용어로 이루어진 짧은 질의이다. 또만 동음이의어를 갖는 용어를 사용하기도 한다. 짧은 질의를 처리하는 일반적인 방법은 시소러스[8]나 Wordnet[1]을 이용한 질의 확장이다. 그러나 시소러스나 Wordnet과 같은 지식 베이스는 구축하기가 용이하지 않으며, 도메인 종속적인 면과 단어의 회귀(sparseness) 문제를 극복하기 어려운 단점이 있다. 또한 동음이의어 용어로 인하여 검색의 정확성이 털어지는 문제점이 있다. 한편, 사용자의 질의를 주의 깊게 살펴보면, 질의로부터 관련 용어 분류 정보를 추출할 수 있다. 본 논문은 사용자의 질의가 관련 용어 분류 정보에 의해 유기적으로 관계를 가지고 있다는 사실에 기인하여 관련 용어 분류 정보에 따라 자동으로 용어 확장 및 한정을 수행하며 적절한 용어 가중치를 부여하는 자동 질의 용어 정련기를 제안한다. 자동 질의 용어 정련기는 용어의 확장, 한정 및 가중치 부여를 통하여 사용자의 정보 검색 요구를 명확히 하여 검색의 정확성을 향상시킨다.

  • PDF

Experimental Analysis of Correct Answer Characteristics in Question Answering Systems (질의응답시스템에서 정답 특징에 관한 실험적 분석)

  • Han, Kyoung-Soo
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.927-933
    • /
    • 2018
  • One of the factors that have the greatest influence on the error of the question answering system that finds and provides answers to natural language questions is the step of searching for documents or passages that contain correct answers. In order to improve the retrieval performance, it is necessary to understand the characteristics of documents and passages containing correct answers. This paper experimentally analyzes how many question words appear in the correct answer documents, how the location of the question word is distributed, and how the topic of the question and the correct answer document are similar using the corpus composed of the question, the documents with correct answer, and the documents without correct answer. This study explains the causes of previous search research results for question answer system and discusses the necessary elements of effective search step.

Query expansion by Similar words Using LSI (잠재적 의미 색인을 이용한 유사 질의어 확장)

  • Lim, Tae Hun;An, Dong Un;Chung, Seong Jong
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.165-169
    • /
    • 2009
  • 오늘날 인터넷 검색은 하루가 다르게 발전되고 있다. 주로 키워드 매칭에 의존을 둔 지금의 검색 서비스들은 사용자 중심의 아이템들을 개발해 정보검색의 경과시간 및 결과의 분류면에서 우수함을 보여주고 있다. 질의어의 의미에 유사한 검색은 아직은 발전하는 단계로, 내용에 기반을 둔 검색 환경에 초점이 맞춰지고 있다. 이와 관련하여 행렬의 특이치 분해(SVD)를 이용한 잠재적 의미 색인 기법(LSI)을 본 연구에서 다루고자 한다. 구축한 시스템의 성능 평가는 재현도 계산으로 비교되었는데 작은 크기의 특이값(singular value)들 생략에 의한 SVD의 성능과 그것을 재이용, 질의어에 대한 의미 구조상 근접한 용어들을 찾아 질의어를 확장한 후 적합한 문서들의 검색을 사용한 특이값 개수, 유사단어 확장 개수를 달리하여 실험하였다. 실험 결과, 특이값 2개를 사용한 잠재적 의미 색인이 특이값 3개를 사용한 잠재적 의미 색인보다 보다 나은 성능을 보였다. 그리고 조건을 달리한 모든 잠재적 의미 색인의 경우 단어 매칭에 의한 적합문서 검색보다 별 뚜렷한 나은 결과는 보이지 않았다. 하지만 의미적으로 관계가 깊은 유사어들을 찾아냈고, 의미적으로 가장 관계 깊은 문서를 대부분의 경우에서 순위 1위로 찾아내는 부분적 우수함을 보였다.

  • PDF

Implementation of Query Expansion Multimedia Data Retrieval System using "FUN" Based Ontology of Emotion (재미 감성 주제 온톨로지를 이용한 질의어 확장 멀티미디어 데이터 검색 시스템 구현)

  • Lee, Jung-Song;Byun, Dong-Ryul;Park, Soon-Cheol
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.279-284
    • /
    • 2010
  • 최근 컴퓨터와 네트워크의 기술 발달로 멀티미디어 데이터가 폭발적으로 증가하고 있다. 따라서 정보검색 시스템도 텍스트 데이터 위주에서 벗어나 멀티미디어 데이터 검색이 큰 비중을 차지하고 있다. 또한 멀티미디어 데이터 질의어처리도 기술적인 변화와 함께 다양한 질의어 확장으로 검색의 정확성을 높이고 있다. 본 논문에서는 인간의 감성에 대한 '재미' 주제 온톨로지를 구축하여 질의어 확장에 응용하였고, 한편의 동영상에서 재미 요소를 찾아내는 멀티미디어 데이터 검색 시스템을 구축하였다. 온톨로지 구축은 한글 워드넷(KorLex)에서 "재미"라는 특정 감소 요소의 의미 계층 구조를 파악하고 토픽맵을 이용하여 구축하였다. 또한, 온톨로지에 정의된 용어들 사이의 가중치는 실시간으로 계산하여 질의어를 확장에 적용하였으며, 따라서 검색의 효율성과 질을 높였다. 검색방법은 사용자가 질의어를 직접 입력하는 텍스트 입력 검색과 온톨로지 구조를 이용한 GUI 인터페이스 검색방법으로 나누어 사용자의 편의성을 증대시켰다.

  • PDF

The Design and Implementation of Reorganization Schemes for Bounding Rectangles in TPR trees (TPR 트리에서 경계사각형 재구성 기법의 설계 및 구현)

  • Kim, Dong-Hyun;Hong, Bong-Hee
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.2 s.12
    • /
    • pp.3-13
    • /
    • 2004
  • The TPR-tree exploits bounding rectangles based on the function of time in order to index moving objects. As time passes on, each edge of a BR expands with the fastest velocity vector. Since the expansion of the BR results in a serious overlaps between neighboring nodes, the performance of range query is getting worse. In this paper, we propose schemes to reorganize bounding rectangles of nodes. When inserting a moving object, we exploit a forced merging scheme to merge two overlapped nodes and re-split it. When deleting a moving object, we used forced reinsertion schemes to reinsert other objects of a node into a tree. The forced reinsertion schemes are classified into a deleted node reinsertion scheme and an overlapped nodes reinsertion scheme. The overlapped nodes reinsertion scheme outperforms the forced merging scheme and the deleted node reinsertion scheme in all experiments.

  • PDF

A Document Summary System based on Personalized Web Search Systems (개인화 웹 검색 시스템 기반의 문서 요약 시스템)

  • Kim, Dong-Wook;Kang, Soo-Yong;Kim, Han-Joon;Lee, Byung-Jeong;Chang, Jae-Young
    • Journal of Digital Contents Society
    • /
    • v.11 no.3
    • /
    • pp.357-365
    • /
    • 2010
  • Personalized web search engine provides personalized results to users by query expansion, re-ranking or other methods representing user's intention. The personalized result page includes URL, page title and small text fragment of each web document. which is known as snippet. The snippet is the summary of the document which includes the keywords issued by either user or search engine itself. Users can verify the relevancy of the whole document using only the snippet, easily. The document summary (snippet) is an important information which makes users determine whether or not to click the link to the whole document. Hence, if a search engine generates personalized document summaries, it can provide a more satisfactory search results to users. In this paper, we propose a personalized document summary system for personalized web search engines. The proposed system provides increased degree of satisfaction to users with marginal overhead.

Efficient Mobile P2P Structure for Content Search Services (콘텐츠 검색 서비스를 위한 효율적인 이동 P2P 구조)

  • Kwak, Dong-Won;Bok, Kyoung-Soo;Kang, Tae-Ho;Yeo, Myung-Ho;Yoo, Jae-Soo;Joe, Ki-Hung
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.30-44
    • /
    • 2009
  • In this paper, we propose the mobile P2P structure supporting content searches for mobile peers efficiently. The proposed mobile P2P structure is a 3-tier structure which consists of a mobile peer, a mobile super peer, and a stationary super peer to reduce the content search cost of mobile P2P service. For content searches, mobile peer searches content in the communication range and performs hierarchical content searches which is using mobile super peer, stationary super peer for expansion of query region. In order to support hierarchial content searches and the continuity of services according to peer mobilities, peer's join/leave processes are explicitly stored by supporting message structures to the upper layer It is shown through experimental evaluation that the proposed structure improves about 32% contents search performance over the existing 2-tier structure. Since it also reduces the messages transferred to the stationary super peers, it reduced about 25% search loads of them.

Multi-class Support Vector Machines Model Based Clustering for Hierarchical Document Categorization in Big Data Environment (빅 데이터 환경에서 계층적 문서 유형 분류를 위한 클러스터링 기반 다중 SVM 모델)

  • Kim, Young Soo;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.600-608
    • /
    • 2017
  • Recently data growth rates are growing exponentially according to the rapid expansion of internet. Since users need some of all the information, they carry a heavy workload for examination and discovery of the necessary contents. Therefore information retrieval must provide hierarchical class information and the priority of examination through the evaluation of similarity on query and documents. In this paper we propose an Multi-class support vector machines model based clustering for hierarchical document categorization that make semantic search possible considering the word co-occurrence measures. A combination of hierarchical document categorization and SVM classifier gives high performance for analytical classification of web documents that increase exponentially according to extension of document hierarchy. More information retrieval systems are expected to use our proposed model in their developments and can perform a accurate and rapid information retrieval service.