질의 최적화기의 중요 기능 중에 하나는 질의가 주어졌을 때 질의 조건을 만족하는 입력 레코드의 개수를 추정하는 일이다. 관계 데이터베이스와 마찬가지로 공간 데이터베이스에서 질의 결과 크기 추정은 입력 데이터 공간을 버켓으로 불리는 작은 영역으로 분할한 후 분할된 영역에 대해서 질의 결과 ■기를 추정한다. 추정의 정확도는 작은 영역으로 분할할 때 근사 계산한 데이터와 실제 데이터의 차이에 의해서 결정되며 이것은 공간 분할을 어떻게 분할하는가에 달려 있다. 기존의 방법은 일차원에 많이 사용되는 데이터의 범위를 균일하게 하는 너비 균등 방법과 빈도수의 합을 일정하게 하는 높이 균등 방법을 공간상의 이차원에 적용한 면적 균등 분할과 개수 균등 분할 방법에 기초를 두고 있다. 본 논문에서 제안한 방법은 공간을 분할할 때 데이터의 범위와 빈도수의 곱을 면적으로 나타낸 후 면적 값의 차이가 가장 큰 순서로 버켓을 정하는 방법으로 데이터 범위와 빈도수를 동시에 고려하여 최적의 버켓을 결정한다. 본 논문에서는 제안한 방법과 기존의 방법을 실제 데이터와 인위데이터를 사용하여 질의 크기, 버켓수, 데이터 개수, 데이터 크기의 변화에 대해서 질의 결과 추정에 대한 정확도를 비교, 분석하여 제안한 방법의 성능 우수성을 확인한다.
공간 질의 크기에 대한 근사치를 구하기 위해서는 입력 데이터 공간을 분할한 후 분할된 영역에 대하여 질의 결과 크기를 추정한다. 본 논문에서는 데이터 편재가 심한 공간 데이터에 대한 질의 크기 추정의 문제를 논의한다. 공간을 분할하는 기법으로 관계 데이터베이스에서 많이 사용되는 너비 균등, 높이 균등 히스토그램에 해당되는 면적 균등, 개수 균등 분할에 대한 방법을 검토하고 공간 인덱싱에 기초한 공간 분할방법에 대해서 알아본다. 본 논문에서는 공간 순서화 기법인 힐버트 공간 채움 곡선을 이용한 공간 분할을 제안한다. 제안한 방법과 기존의 방법을 실제 데이터와 인위 데이터를 사용하여 편재된 공간 데이터에 대한 질의 결과 크기의 추정에 대한 정확도를 비교한다. 본 실험에서 힐버트 채움 곡선에 의한 공간 분할이 공간 질의 크기 버켓 수의 변화, 데이터 위치 편재도의 변화, 데이터 크기의 변화에 대해서 기존의 분할 방법보다 질의 결과 크기 추정에 대해서 우수한 성능을 보였다.
Journal of information and communication convergence engineering
/
제8권5호
/
pp.519-523
/
2010
In Gen-2 RFID system, the initial value of $Q_{fp}$, which is the slot-count parameter of Q-algorithm, is not defined in the standard. In this case, if the number of tags within the reader's identification range is small and we let the initial $Q_{fp}$ be large, the number of empty slot will be large. On the other hand, if we let the initial $Q_{fp}$ be small in spite of many tags, almost all the slots will be collided. As a result, the performance will be declined because the frame size does not converge to the optimal point quickly during the query round. In this paper, we propose a scheme to allocate the optimal initial $Q_{fp}$ through the tag number estimation before the query round begins. Through computer simulations, it is demonstrated that the proposed scheme achieves more stable performance than Gen-2 Q-algorithm.
Gen-2 Q-알고리즘에서는 태그의 수가 적은 상태에서 초기 $Q_{fp}$ 값을 크게 하면 빈 슬롯이 많이 발생하고, 태그의 수가 많은 상태에서 초기 $Q_{fp}$ 값을 적게 하면 충돌이 많이 발생한다. 또한 적절하지 못한 가중치를 선택할 경우 빈 슬롯 또는 충돌 슬롯이 많이 발생할 수 있다. 이로 인하여 질의 라운드 동안 최적의 프레임 크기에 수렴하는 속도가 늦어지므로 성능이 저하되는 문제점이 있다. 본 논문에서는 태그 수를 추정하여 현재의 슬롯-카운트 크기에 따라 가중치를 결정하는 기법을 제안하고, 이에 대한 성능을 분석한다.
공간 데이터베이스의 규모는 매우 방대하여 질의 처리에 많은 비용이 발생한다. 따라서 효율적인 질의 처리를 위해서는 질의 수행 결과의 예측이 필요하다. 이를 위해 실제 공간 데이터의 특성을 근접하게 나타내는 요약 데이터를 생성하여 그 결과를 통해 질의 결과의 크기를 추정하게 된다. 기존의 공간 데이터 요약 기법으로는 면적 균등 분할 기법, 개수 균등 분할 기법, 인덱스 분활 기법 등이 있다. 본 논문에서는 기존에 연구된 다양한 분말 기법에 대해 알아보고, 힐버트 공간 재움 곡선 방법에 개수 균등 분말 기법을 적용시킨 새로운 공간 분할 방법을 제안하여 기존의 방법과 새로운 방법의 성능을 비교한다.
EPCglobal Class-1 Gen-2 RFID 시스템의 Q-알고리즘에서는 슬롯-카운트 매개변수인 $Q_{fp}$ 값에 대한 초기 값이 정의되어 있지 않고, 슬롯-카운트의 크기를 증감시키기 위한 매개변수인 가중치 C의 값이 정해져 있지 않다. 따라서 태그의 수가 적은 상태에서 초기 $Q_{fp}$ 값을 크게 하면 빈 슬롯이 많이 발생하고, 태그의 수가 많은 상태에서 초기 $Q_{fp}$값을 적게 하면 충돌이 많이 발생한다. 또한 적절하지 못한 가중치를 선택할 경우 빈 슬롯 또는 충돌 슬롯이 많이 발생할 수 있다. 이로 인하여 질의 라운드 동안 최적의 프레임 크기에 수렴하는 속도가 늦어지므로 성능이 저하되는 문제점이 있다. 본 논문에서는 태그 수를 추정하여 최적의 초기 $Q_{fp}$ 값을 할당하고 현재의 슬롯-카운트 크기에 따라 가중치를 결정하는 기법을 제안하고, 이에 대한 성능을 분석한다.
대규모의 데이터를 다루는 여러 시스템에서 데이터를 다수의 병렬 디스크에 분산시켜 저장한 후 질의 처리시 동시에 여러 개의 디스크를 접근함으로써 입출력 성능의 향상을 위한 많은 노력들이 행해져 왔다. 대부분 이전 연구들은 데이터 공간을 이루는 각 차원이 겹치지 않는 여러개의 구간으로 나누어져 전체 데이터 공간이 그리드 형태로 분할되어 있다는 가정하에 각 차원의 구간 번호로 결정되는 그리드 셀에 대해서 효과적으로 디스크 번호를 할당하는 알고리즘 개발에 집중되었다. 하지만, 그들은 데이터 공간을 그리드 형태로 분할하는 방법이 전체 디클러스터링 알고리즘 성능에 미치는 영향을 간과하였다. 본 논문에서 우리는 효과적인 그리드 분할을 통하여 매핑 함수를 이용하는 디클러스터링 알고리즘의 성능을 향상 시켰다. 이를 위하여 영역 질의 크기가 주어졌을 때 겹치는 그리드 셀의 수를 예측하는 모델을 제시하였으며 이를 이용하여 가능한 그리드 분할 방법들 중에서 질의 크기를 감소시키는 분할 방법을 선택하였다. 일반적으로, 다차원 데이터에 대해서는 이진 분할을 하지만 본 논문에서는 더 작은 수의 차원을 선택해서 여러 번 분할함으로써 질의를 만족하는 그리드 셀의 수를 감소시켰다. 다양한 실험 결과에 의하면 본 논문에서 제시한 예측 모델은 질의 크기와 차원에 관계없이 0.5% 이내의 에러율을 보이는 것으로 나타났다. 또한 효과적인 그리드 분할을 통하여 다차원 데이터에 대해서 가장 성능이 좋은 것으로 소개되고 있는 Kronecker sequence 매핑 함수를 이용하는 디클러스터링 알고리즘의 성능을 최대 23배까지 향상시킬 수 있음을 알 수 있었다.
비순서화된 스트림은 윈도우 기반의 질의를 처리할 때 부정확하거나 지연된 결과를 유발할 수 있다. 기존의 방식에서는 일반적으로 버퍼를 이용하여 비순서화된 스트림을 정렬하며, 버퍼의 크기를 추정하기 위해 네트워크 지연의 최대값에 기반한 방식을 이용한다. 그러나 이러한 방식은 버퍼의 크기를 불필요하게 큰 값으로 추정할 수 있으며, 지연된 질의 결과를 발생시킬 수 있다. 본 논문에서는 네트워크 지연의 변화에 따라 적응적으로 버퍼의 크기를 추정하기 위한 확률론적인 접근 방법을 제안한다 제안하는 방법에서는 튜플의 생성이 포아송 분포를 따르며 네트워크 지연은 정규 분포를 따른다고 가정한다. 그리고 이러한 가정을 바탕으로 추정식을 유도한다. 추정식은 튜플의 손실율을 입력인자로 요구하며, 이는 실시간에 튜플의 손실에 있어서 허용 가능한 백분율을 나타낸다. 사용자는 손실율을 질의문에서 정의함으로써, 응용의 요구에 따라 질의 결과의 정확성이나 처리속도 중 원하는 특성에 중점을 둘 수 있다. 본 논문의 실험 결과는 제안한 추정식이 기존의 네트워크 지연의 최대값에 기반한 추정식에 비해 적응성이 우수함을 보인다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권12호
/
pp.5888-5903
/
2019
The Relational ranking method applies authority-based ranking in relational dataset that can be modeled as graphs considering also their tuples' values. Authority directions from tuples that contain the given keywords and transfer to their corresponding neighboring nodes in accordance with their values and semantic connections. From our previous work, ObjectRank extends to ValueRank that also takes into account the value of tuples in authority transfer flows. In a maked difference from ObjectRank, which only considers authority flows through relationships, it is only valid in the bibliographic databases e.g. DBLP dataset, ValueRank facilitates the estimation of importance for any databases, e.g. trading databases, etc. A relational keyword search paradigm Object Summary (denote as OS) is proposed recently, given a set of keywords, a group of Object Summaries as its query result. An OS is a multilevel-tree data structure, in which node (namely the tuple with keywords) is OS's root node, and the surrounding nodes are the summary of all data on the graph. But, some of these trees have a very large in total number of tuples, size-l OSs are the OS snippets, have also been investigated using ValueRank.We evaluated the real bibliographical dataset and Microsoft business databases to verify of our proposed approach.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.