데이터베이스 관리 시스템의 핵심 알고리즘인 해쉬 조인은 해싱을 위한 메모리가 부족한 경우(즉, 해쉬 테이블 오버플로우) 디스크 입출력를 유발하게 된다 하드디스크를 임시 저장공간으로 사용할 경우, 해쉬 조인의 probing 단계에서 과도한 임의 읽기로 인해 I/O 시간이 성능을 저하시키게 된다. 한편, 플래시메모리 SSD가 저장장치로 각광을 받고 있으며, 머지않아 엔터프라이즈 환경에서 하드디스크를 대체할 것으로 예상 된다 하드디스크와 달리, 기계적인 동작 장치가 없는 플래시메모리 SSD의 경우 임의 읽기에서 빠른 성능을 보이기 때문에 해쉬 조인의 성능을 크게 향상시킬 수 있다. 본 논문에서는 플래시 메모리 SSD를 해쉬 조인을 위한 임시 저장공간으로 사용할 경우의 몇 가지 중요하고 현실적인 이슈들을 다룬다. 우선, 해쉬 조인의 I/O 패턴을 자세히 설명하고, 하드디스크에 비해 플래시메모리 SSD가 수십 배에 가까운 성능 향상을 보이는 이유를 설명한다. 다음으로, 클러스터 크기(즉, 해쉬 조인 알고리즘에서 사용하는 I/O 단위)가 성능에 미치는 영향을 제시하고 분석한다. 마지막으로, 하드디스크의 경우, DBMS의 질의 최적화기가 산출하는 비용이 실 수행시간과 편차가 클 수 있는데 반해, 플래시메모리 SSD의 경우 비용 산출을 정확히 하게 됨을 실험적으로 보인다. 결론적으로, 플래시메모리 SSD를 해쉬 조인을 위한 임시 저장공간으로 사용할 경우, 빠른 성능과 더불어 질의 최적화기의 비용 산출이 훨씬 더 신뢰할 수 있음을 보인다.
일정 기간 동안 객체의 변화한 값들을 기록한 것을 그 객체에 대한 시계열 데이타 시퀀스라고 부르며, 이들의 집합을 시계열 데이타베이스라고 한다. 서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이타베이스로부터 검색하는 연산이다. 본 논문에서는 서브시퀀스 매칭의 성능을 극대화하기 위한 방안을 제시한다. 먼저, 윈도우 크기 효과로 인한 서브시퀀스 매칭의 심각한 성능 저하 현상을 정량적으로 관찰하여, 하나의 윈도우 크기를 대상으로 만든 단 하나의 인덱스만을 이용하는 것은 실제 응용에서 만족할만한 성능을 제공할 수 없다는 것을 규명하였다 또한, 이러한 문제로 인해 다양한 윈도우 크기들을 기반으로 다수의 인덱스들을 구성하여 서브시퀀스 매칭을 수행하는 인덱스 보간법의 응용이 필요함을 보였다. 인덱스 보간법을 응용하여 서브시퀀스 매칭을 수행하기 위해서는 먼저 다수의 인덱스들을 위한 윈도우 크기들을 결정해야 한다. 본 연구에서는 물리적 데이타베이스 설계 방식을 이용하여 이러한 최적의 다수의 윈도우 크기들을 선정하는 문제를 해결하였다. 이를 위하여 시계열 데이터 베이스에서 수행될 예정인 질의 시퀀스들의 집합과 인덱스 구성의 기반이 되는 윈도우들의 크기의 집합이 주어질 때, 전체 서브시퀀스 매칭들을 수행하는 데에 소요되는 비용을 예측할 수 있는 공식을 산출하였다. 또한, 이 비용 공식을 이용하여 전체 서브시퀀스 매칭들의 성능을 극대화 할 수 있는 최적의 윈도우 크기들을 결정하는 알고리즘을 제안하였으며, 이 알고리즘의 최적성과 효율성을 이론적으로 규명하였다. 끝으로, 실제 주식 데이타와 대량의 합성 데이타를 이용한 실험 결과, 제안된 기법은 기존의 단순한 기법과 비교하여 1.5배에서 7.8배 성능이 향상됨을 보였다.
데이터에 내재되어 있는 특이 패턴을 찾고자 데이터 분석을 할 때에 보통 다차원적인 데이터 집계를 하는데, 이때에 표준 SQL 쿼리를 사용해도 좋지만 쿼리가 아주 복잡해진다는 단점이 생기게 된다. 쿼리가 복잡해지면 표준 테이블을 여러 번 참조해야 되고 결과적으로 쿼리의 성능이 저하된다는 뜻이다. OLAP 쿼리는 복잡한 것이 대다수이기 때문에 SQL 쿼리를 대신할 새로운 집계용 연산자인 데이터 큐브를 간단히 불러 큐브를 만들 필요가 생기는 것이다. 집계를 하고, 부분 합을 구하는 것과 같은 OLAP 업무를 지원해 주는 것이 데이터 큐브이다. 이러한 데이터 큐브를 작성하는데 관련된 집계함수에는 여러 가지가 있는데, 이를 분배적 함수, 대수적 함수 그리고 전체관적 함수의 3가지로 분류할 수 있다. 이 중, SUM, COUNT, MAX, MIN과 같은 분배적 함수는 데이터 큐브를 작성하는 데에 직접사용 할 수 있고, AVG와 같은 대수적 함수는 매개함수를 활용하면 사용가능 하다고 알려져 있다. 즉, AVG 자체는 분배적 함수가 아니지만, (SUM, COUNT)와 같은 매개함수로 분배적 함수가되기 때문에 매개함수를 이용하여 구하면 된다는 뜻이다. 그러나 본 연구에서는 (SUM, COUNT)와 같은 매개함수를 통해 AVG를 구하는 것이 OLAP 큐브 작성에 적용시킬 수 없다는 사실을 확인했으며, 결과적으로 이 매개함수를 활용하면 잘못된 결론에 다다르고 그릇된 의사결정을 하게 된다는 사실을 확인하게 되었다. 따라서 본 연구에서는 집계함수 AVG를 OLAP 큐브에 적용시켰을 때의 여러 문제점을 밝혀내고 또한 이들 문제점을 해결할 방안을 찾고자 하는 데에 목적을 두고 있다.
최근 XML 저장 기법, 질의 최적화, 인덱싱 등의 XML 관련 기술이 활발히 연구되고 있다. 이와 관련하여 하나의 DTD나 XML Schema로 정의된 고정 구조를 공유하는 문서 집합이 아니라 다양한 구조를 가진 문서 집합인 경우 다중 문서간의 구조적 유사성이나 차이점 등을 파악할 필요가 있다. 예를 들어 서로 다른 사이트나 문서 관리 시스템에서 도출된 문서들을 합병하거나 분류할 필요가 있을 때, 문서를 처리하기 위해 공유 구조를 발견하는 일은 매우 중요하다. 본 연구에서는 다양한 문서들의 구조를 구성하는 경로들간의 유사성을 파악하기 위해 기존의 순차패턴 마이닝 알고리즘(1)을 변형하여 두 XML 문서간 최대 유사 경로를 추출한다. 몇 가지 실험을 통해 본 논문에서 제안한 변형된 순차패턴 마이닝 알고리즘이 두 문서간의 최대 유사 경로를 찾아내고 또한 두 문서간의 정확한 공유 경로 및 최대 유사 경로를 정확히 찾을 수 있음을 보인다. 또한 실험 결과 분석을 위해 최대 유사 경로를 기반으로 정의된 유사성 척도가 XML 문서를 정확하게 분류할 있음을 보인다.
데이터 웨어하우스에서 사용자는 전형적으로 상호작용적으로 질의를 부여함으로서 추세와 패턴 또는 예외적인 데이터의 행위를 검색한다. OLAP 영역-합 질의는 데이터 웨어하우스에서 추세를 발견하거나 또는 애트리뷰트들간의 관계를 발견하는데 폭 넓게 사용되고 있다. 최근의 기업환경은 데이터 큐브의 데이터 요소들이 자주 바뀌게 된다. 문제는 프리픽스 섬 큐브를 업데이트하는 비용이 매우 크다는 것이다. 이 논문에서는Δ-트리로 불리는 인덱싱 구조를 사용하여 업데이트 비용을 상당히 줄이는 참신한 알고리즘을 제안한다. 또한, 근사 또는 정확한 해를 제공하므로 질의의 전체비용을 줄일 수 있는 하이브리드 방법을 제안한다. 이는 의사 결정 지원 시스템과 같이 시간을 많이 소비하는 정확한 해보다는 빠른 근사 해를 필요로 하는 다양한 응용들에 큰 장점이 있다. 폭 넓은 실험은 우리의 방법이 다른 방법들과 비교하여 다양한 차원에서 매우 효율적으로 수행됨을 보여준다.
Sioutas, Spyros;Magkos, Emmanouil;Karydis, Ioannis;Verykios, Vassilios S.
Journal of Computing Science and Engineering
/
제5권3호
/
pp.210-222
/
2011
In this work, we study the problem of privacy-preservation data publishing in moving objects databases. In particular, the trajectory of a mobile user in a plane is no longer a polyline in a two-dimensional space, instead it is a two-dimensional surface of fixed width $2A_{min}$, where $A_{min}$ defines the semi-diameter of the minimum spatial circular extent that must replace the real location of the mobile user on the XY-plane, in the anonymized (kNN) request. The desired anonymity is not achieved and the entire system becomes vulnerable to attackers, since a malicious attacker can observe that during the time, many of the neighbors' ids change, except for a small number of users. Thus, we reinforce the privacy model by clustering the mobile users according to their motion patterns in (u, ${\theta}$) plane, where u and ${\theta}$ define the velocity measure and the motion direction (angle) respectively. In this case, the anonymized (kNN) request looks up neighbors, who belong to the same cluster with the mobile requester in (u, ${\theta}$) space: Thus, we know that the trajectory of the k-anonymous mobile user is within this surface, but we do not know exactly where. We transform the surface's boundary poly-lines to dual points and we focus on the information distortion introduced by this space translation. We develop a set of efficient spatiotemporal access methods and we experimentally measure the impact of information distortion by comparing the performance results of the same spatiotemporal range queries executed on the original database and on the anonymized one.
시퀀스 매칭은 시계열 데이터베이스로부터 질의 시퀀스와 변화의 추세가 유사한 데이터 시퀀스들을 검색하는 연산이다. 기존의 대부분의 연구에서는 효과적인 시퀀스 매칭을 위하여 다차원 인덱스를 사용하며, 데이터 시퀀스를 이산 푸리에 변환(Discrete Fourier Transform: DFT)한 후, 단순히 앞의 두 개 내지 세 개의 DFT 계수만을 구성 속성 (organizing attributes)으로 사용함으로써 고차원의 경우 발생하는 차원 저주(dimensionality curse) 문제를 해결한다. 본 논문에서는 기존의 단순한 기법이 가지는 성능 상의 문제점들을 지적하고, 이러한 문제점들을 해결하는 최적의 다차원 인덱스 구성 기법을 제안한다. 제안된 기법은 대상이 되는 시계열 데이터베이스의 특성을 사전에 분석함으로써 변별력이 뛰어난 요소들을 다차원 인덱스의 구성 속성으로 선정하며, 비용 모델(cost model)을 기반으로 한 시퀀스 매칭 비용의 추정을 통하여 다차원 인덱스에 참여하는 최적의 구성 속성의 수를 결정한다. 제안된 기법의 우수성을 규명하기 위하여 실험을 통한기존 기법과의 성능 비교를 수행하였다 실험 결과에 의하면, 제안된 기법은 기존의 기법에 비교하여 매우 큰 성능 개선 효과를 가지는 것으로 나타났다.
본 논문에서는 퍼지 k-NN과 reconstruction error에 기반을 둔 feature selection을 이용한 lazy 분류기 설계를 제안하였다. Reconstruction error는 locally linear reconstruction의 평가 지수이다. 새로운 입력이 주어지면, 퍼지 k-NN은 local 분류기가 유효한 로컬 영역을 정의하고, 로컬 영역 안에 포함된 데이터 패턴에 하중 값을 할당한다. 로컬 영역과 하중 값을 정의한 우에, feature space의 차원을 감소시키기 위하여 feature selection이 수행된다. Reconstruction error 관점에서 우수한 성능을 가진 여러 개의 feature들이 선택 되어 지면, 다항식의 일종인 분류기가 하중 최소자승법에 의해 결정된다. 실험 결과는 기존의 분류기인 standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees와 비교 결과를 보인다.
To promote health status, strategies and interventions to improve nutrition should be based on the proper diagnosis of the subject's eating patterns. The elderly usually have traditional food habits and preferences, and it is very difficult to change them. This study was designed to identify dietary behavior and food preference of the elderly, in order to provide baseline data for the Elderly Nutrition Intervention Program for the Public Health Center. A survey questionnaire was made for use by trained interviewers to query 151elderly people from 5 community elderly centers located in Suwon, Korea. The majority of them ate regularly and partook of all available side dishes. Their major dietary problems were frequent consumptions of salty foods, and eating too quickly. They consumed grains and vegetables regularly, but seldomly ate dairy products, fruits, meat and food prepared with oil. They also tended to eschew ready made processed food, high cholesterol food, and fast food. Also they did not dine out as much as younger people. Desirable eating habit score were not significantly influenced by socioeconomic variables and nutrition-related characteristics. These included nutrition knowledge, Nutritional Risk Index(NRI) and a score of health concerns. However, meal balance scores were significantly higher in the younger group(p<.05), the higher household income group(p<.05). According to stepwise multiple regression analysis, NRI was the most important determinant of a desirable eating habit score for the male elderly, whereas the score of health concerns was mo9st important for female elderly subjects. The greatest predictor of the meal f balance score was nutrition knowledge. The elderly liked sweet tasting food, grains, rice, stews and Korean style soups. They disliked sour food, dairy products, processed food, and bread. The results indicate that the Elderly Nutrition Education Program should focus on increasing consumption of dairy products, fruits and food with oil, prepared by traditional Korean cooking methods. It also suggests that the program planning should consider the socioeconomic status of the elderly, such as income and education level, as well as concern for health.
Objectives : The aim of this paper is to study the methodology for effectively analyzing the "Jinguiyaolue" prescriptions using database, and to explore possibilities of applying the data construction and query produced in the process to comparative research with other texts in the future. Methods : Using "Xinbianzhongjingquanshu(新編仲景全書)" as original script, the contents of "Jinguiyaolue" were entered into the database, in which one verse would be separated according to content for individual usage. Also, data with medicinal construction and disease pattern information of the previously constructed "Shanghanlun" database designed for comparison with other texts was applied for comparative analysis. Results : For input and analysis, 6 tables and 12 queries were made and used. Formulas were accessible by using herbal combinations, and applications of these formulas could be assembled for comparison. Formulas were also accessible by using disease pattern combinations, and combinations of herbs and disease pattern together were also applicable. In comparison with other texts, examples and frequency of usage of herbs could be relatively accurately compared, while disease patterns could not easily be compared. Conclusions : Herbal combinations, disease pattern combinations could yield related texts and herb/disease pattern combinations of the prescriptions in the "Jinguiyaolue", which shortened time needed for research among formulas in texts. However, standardization research for disease pattern is necessary for a more accurate comparative study that includes disease pattern information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.