• Title/Summary/Keyword: Query Patterns

Search Result 105, Processing Time 0.021 seconds

Improving the Retrieval Effectiveness by Incorporating Word Sense Disambiguation Process (정보검색 성능 향상을 위한 단어 중의성 해소 모형에 관한 연구)

  • Chung, Young-Mee;Lee, Yong-Gu
    • Journal of the Korean Society for information Management
    • /
    • v.22 no.2 s.56
    • /
    • pp.125-145
    • /
    • 2005
  • This paper presents a semantic vector space retrieval model incorporating a word sense disambiguation algorithm in an attempt to improve retrieval effectiveness. Nine Korean homonyms are selected for the sense disambiguation and retrieval experiments. The total of approximately 120,000 news articles comprise the raw test collection and 18 queries including homonyms as query words are used for the retrieval experiments. A Naive Bayes classifier and EM algorithm representing supervised and unsupervised learning algorithms respectively are used for the disambiguation process. The Naive Bayes classifier achieved $92\%$ disambiguation accuracy. while the clustering performance of the EM algorithm is $67\%$ on the average. The retrieval effectiveness of the semantic vector space model incorporating the Naive Bayes classifier showed $39.6\%$ precision achieving about $7.4\%$ improvement. However, the retrieval effectiveness of the EM algorithm-based semantic retrieval is $3\%$ lower than the baseline retrieval without disambiguation. It is worth noting that the performances of disambiguation and retrieval depend on the distribution patterns of homonyms to be disambiguated as well as the characteristics of queries.

Subsequence Matching Under Time Warping in Time-Series Databases : Observation, Optimization, and Performance Results (시계열 데이터베이스에서 타임 워핑 하의 서브시퀀스 매칭 : 관찰, 최적화, 성능 결과)

  • Kim Man-Soon;Kim Sang-Wook
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1385-1398
    • /
    • 2004
  • This paper discusses an effective processing of subsequence matching under time warping in time-series databases. Time warping is a trans-formation that enables finding of sequences with similar patterns even when they are of different lengths. Through a preliminary experiment, we first point out that the performance bottleneck of Naive-Scan, a basic method for processing of subsequence matching under time warping, is on the CPU processing step. Then, we propose a novel method that optimizes the CPU processing step of Naive-Scan. The proposed method maximizes the CPU performance by eliminating all the redundant calculations occurring in computing the time warping distance between the query sequence and data subsequences. We formally prove the proposed method does not incur false dismissals and also is the optimal one for processing Naive-Scan. Also, we discuss the we discuss to apply the proposed method to the post-processing step of LB-Scan and ST-Filter, the previous methods for processing of subsequence matching under time warping. Then, we quantitatively verify the performance improvement ef-fects obtained by the proposed method via extensive experiments. The result shows that the performance of all the three previous methods im-proves by employing the proposed method. Especially, Naive-Scan, which is known to show the worst performance, performs much better than LB-Scan as well as ST-Filter in all cases when it employs the proposed method for CPU processing. This result is so meaningful in that the performance inversion among Nive- Scan, LB-Scan, and ST-Filter has occurred by optimizing the CPU processing step, which is their perform-ance bottleneck.

An Implementation of Automatic Genre Classification System for Korean Traditional Music (한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현)

  • Lee Kang-Kyu;Yoon Won-Jung;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper proposes an automatic genre classification system for Korean traditional music. The Proposed system accepts and classifies queried input music as one of the six musical genres such as Royal Shrine Music, Classcal Chamber Music, Folk Song, Folk Music, Buddhist Music, Shamanist Music based on music contents. In general, content-based music genre classification consists of two stages - music feature vector extraction and Pattern classification. For feature extraction. the system extracts 58 dimensional feature vectors including spectral centroid, spectral rolloff and spectral flux based on STFT and also the coefficient domain features such as LPC, MFCC, and then these features are further optimized using SFS method. For Pattern or genre classification, k-NN, Gaussian, GMM and SVM algorithms are considered. In addition, the proposed system adopts MFC method to settle down the uncertainty problem of the system performance due to the different query Patterns (or portions). From the experimental results. we verify the successful genre classification performance over $97{\%}$ for both the k-NN and SVM classifier, however SVM classifier provides almost three times faster classification performance than the k-NN.

Character-based Subtitle Generation by Learning of Multimodal Concept Hierarchy from Cartoon Videos (멀티모달 개념계층모델을 이용한 만화비디오 컨텐츠 학습을 통한 등장인물 기반 비디오 자막 생성)

  • Kim, Kyung-Min;Ha, Jung-Woo;Lee, Beom-Jin;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • Previous multimodal learning methods focus on problem-solving aspects, such as image and video search and tagging, rather than on knowledge acquisition via content modeling. In this paper, we propose the Multimodal Concept Hierarchy (MuCH), which is a content modeling method that uses a cartoon video dataset and a character-based subtitle generation method from the learned model. The MuCH model has a multimodal hypernetwork layer, in which the patterns of the words and image patches are represented, and a concept layer, in which each concept variable is represented by a probability distribution of the words and the image patches. The model can learn the characteristics of the characters as concepts from the video subtitles and scene images by using a Bayesian learning method and can also generate character-based subtitles from the learned model if text queries are provided. As an experiment, the MuCH model learned concepts from 'Pororo' cartoon videos with a total of 268 minutes in length and generated character-based subtitles. Finally, we compare the results with those of other multimodal learning models. The Experimental results indicate that given the same text query, our model generates more accurate and more character-specific subtitles than other models.

An Efficient Spatial Join Method Using DOT Index (DOT 색인을 이용한 효율적인 공간 조인 기법)

  • Back, Hyun;Yoon, Jee-Hee;Won, Jung-Im;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.420-436
    • /
    • 2007
  • The choice of an effective indexing method is crucial to guarantee the performance of the spatial join operator which is heavily used in geographical information systems. The $R^*$-tree based method is renowned as one of the most representative indexing methods. In this paper, we propose an efficient spatial join technique based on the DOT(Double Transformation) index, and compare it with the spatial Join technique based on the $R^*$-tree index. The DOT index transforms the MBR of an spatial object into a single numeric value using a space filling curve, and builds the $B^+$-tree from a set of numeric values transformed as such. The DOT index is possible to be employed as a primary index for spatial objects. The proposed spatial join technique exploits the regularities in the moving patterns of space filling curves to divide a query region into a set of maximal sub-regions within which space filling curves traverse without interruption. Such division reduces the number of spatial transformations required to perform the spatial join and thus improves the performance of join processing. The experiments with the data sets of various distributions and sizes revealed that the proposed join technique is up to three times faster than the spatial join method based on the $R^*$-tree index.