• Title/Summary/Keyword: Query Pattern

Search Result 121, Processing Time 0.021 seconds

A Study of Similarity Measures on Multidimensional Data Sequences Using Semantic Information (의미 정보를 이용한 다차원 데이터 시퀀스의 유사성 척도 연구)

  • Lee, Seok-Lyong;Lee, Ju-Hong;Chun, Seok-Ju
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.283-292
    • /
    • 2003
  • One-dimensional time-series data have been studied in various database applications such as data mining and data warehousing. However, in the current complex business environment, multidimensional data sequences (MDS') become increasingly important in addition to one-dimensional time-series data. For example, a video stream can be modeled as an MDS in the multidimensional space with respect to color and texture attributes. In this paper, we propose the effective similarity measures on which the similar pattern retrieval is based. An MDS is partitioned into segments, each of which is represented by various geometric and semantic features. The similarity measures are defined on the basis of these segments. Using the measures, irrelevant segments are pruned from a database with respect to a given query. Both data sequences and query sequences are partitioned into segments, and the query processing is based upon the comparison of the features between data and query segments, instead of scanning all data elements of entire sequences.

User Interaction-based Graph Query Formulation and Processing (사용자 상호작용에 기반한 그래프질의 생성 및 처리)

  • Jung, Sung-Jae;Kim, Taehong;Lee, Seungwoo;Lee, Hwasik;Jung, Hanmin
    • Journal of KIISE:Databases
    • /
    • v.41 no.4
    • /
    • pp.242-248
    • /
    • 2014
  • With the rapidly growing amount of information represented in RDF format, efficient querying of RDF graph has become a fundamental challenge. SPARQL is one of the most widely used query languages for retrieving information from RDF dataset. SPARQL is not only simple in its syntax but also powerful in representation of graph pattern queries. However, users need to make a lot of efforts to understand the ontology schema of a dataset in order to compose a relevant SPARQL query. In this paper, we propose a graph query formulation and processing scheme based on ontology schema information which can be obtained by summarizing RDF graph. In the context of the proposed querying scheme, a user can interactively formulate the graph queries on the graphic user interface without making efforts to understand the ontology schema and even without learning SPARQL syntax. The graph query formulated by a user is transformed into a set of class paths, which are stored in a relational database and used as the constraint for search space reduction when the relational database executes the graph search operation. By executing the LUBM query 2, 8, and 9 over LUBM (10,0), it is shown that the proposed querying scheme returns the complete result set.

A Review of Window Query Processing for Data Streams

  • Kim, Hyeon Gyu;Kim, Myoung Ho
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.220-230
    • /
    • 2013
  • In recent years, progress in hardware technology has resulted in the possibility of monitoring many events in real time. The volume of incoming data may be so large, that monitoring all individual data might be intractable. Revisiting any particular record can also be impossible in this environment. Therefore, many database schemes, such as aggregation, join, frequent pattern mining, and indexing, become more challenging in this context. This paper surveys the previous efforts to resolve these issues in processing data streams. The emphasis is on specifying and processing sliding window queries, which are supported in many stream processing engines. We also review the related work on stream query processing, including synopsis structures, plan sharing, operator scheduling, load shedding, and disorder control.

Intelligent Query Analysis using Fuzzy Association Rule (퍼지 연관규칙을 이용한 지능적 질의해석)

  • Kim, Mi-Hye
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2214-2218
    • /
    • 2010
  • Association rule is one of meaning and useful extraction methods from large amounts of data, and furnish useful information to user for data describing a pattern or similarity among attributes in database. Association rule have been studied about existence and nonexistence rule in boolean database. In this paper, we propose an intelligent query system using fuzzy association rule by extraction association rule changing a quantitative attribute data to a nominal attribute value.

kNN Query Processing Algorithm based on the Encrypted Index for Hiding Data Access Patterns (데이터 접근 패턴 은닉을 지원하는 암호화 인덱스 기반 kNN 질의처리 알고리즘)

  • Kim, Hyeong-Il;Kim, Hyeong-Jin;Shin, Youngsung;Chang, Jae-woo
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1437-1457
    • /
    • 2016
  • In outsourced databases, the cloud provides an authorized user with querying services on the outsourced database. However, sensitive data, such as financial or medical records, should be encrypted before being outsourced to the cloud. Meanwhile, k-Nearest Neighbor (kNN) query is the typical query type which is widely used in many fields and the result of the kNN query is closely related to the interest and preference of the user. Therefore, studies on secure kNN query processing algorithms that preserve both the data privacy and the query privacy have been proposed. However, existing algorithms either suffer from high computation cost or leak data access patterns because retrieved index nodes and query results are disclosed. To solve these problems, in this paper we propose a new kNN query processing algorithm on the encrypted database. Our algorithm preserves both data privacy and query privacy. It also hides data access patterns while supporting efficient query processing. To achieve this, we devise an encrypted index search scheme which can perform data filtering without revealing data access patterns. Through the performance analysis, we verify that our proposed algorithm shows better performance than the existing algorithms in terms of query processing times.

A Physical Storage Design Method for Access Structures of Image Information Systems

  • Lee, Jung-A;Lee, Jong-Hak
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1150-1166
    • /
    • 2018
  • This paper presents a physical storage design method for image access structures using transformation techniques of multidimensional file organizations in image information systems. Physical storage design is the process of determining the access structures to provide optimal query processing performance for a given set of queries. So far, there has been no such attempt in the image information system. We first show that the number of pages to be accessed decreases as the shape of the given retrieval query region and that of the data page region become similar in the transformed domain space. Using these properties, we propose a method for finding an optimal image access structure by controlling the shapes of the page regions. For the performance evaluation, we have performed many experiments with a multidimensional file organization using transformation techniques. The results indicate that our proposed method is at least one to maximum five times faster than the conventional method according to the query pattern within the scope of the experiments. The result confirms that the proposed physical storage design method is useful in a practical way.

A Study on the Efficient Feature Vector Extraction for Music Information Retrieval System (음악 정보검색 시스템을 위한 효율적인 특징 벡터 추출에 관한 연구)

  • 윤원중;이강규;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.532-539
    • /
    • 2004
  • In this Paper, we propose a content-based music information retrieval (MIR) system base on the query-by-example (QBE) method. The proposed system is implemented to retrieve queried music from a dataset where 60 music samples were collected for each of the four genres in Classical, Hiphop. Jazz. and Reck. resulting in 240 music files in database. From each query music signal, the system extracts 60 dimensional feature vectors including spectral centroid. rolloff. flux base on STFT and also the LPC. MFCC and Beat information. and retrieves queried music from a trained database set using Euclidean distance measure. In order to choose optimum features from the 60 dimension feature vectors, SFS method is applied to draw 10 dimension optimum features and these are used for the Proposed system. From the experimental result. we can verify the superior performance of the proposed system that provides success rate of 84% in Hit Rate and 0.63 in MRR which means near 10% improvements over the previous methods. Additional experiments regarding system Performance to random query Patterns (or portions) and query lengths have been investigated and a serious instability problem of system Performance is Pointed out.

Privacy-Preserving Parallel Range Query Processing Algorithm Based on Data Filtering in Cloud Computing (클라우드 컴퓨팅에서 프라이버시 보호를 지원하는 데이터 필터링 기반 병렬 영역 질의 처리 알고리즘)

  • Kim, Hyeong Jin;Chang, Jae-Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.9
    • /
    • pp.243-250
    • /
    • 2021
  • Recently, with the development of cloud computing, interest in database outsourcing is increasing. However, when the database is outsourced, there is a problem in that the information of the data owner is exposed to internal and external attackers. Therefore, in this paper, we propose a parallel range query processing algorithm that supports privacy protection. The proposed algorithm uses the Paillier encryption system to support data protection, query protection, and access pattern protection. To reduce the operation cost of a checking protocol (SRO) for overlapping regions in the existing algorithm, the efficiency of the SRO protocol is improved through a garbled circuit. The proposed parallel range query processing algorithm is largely composed of two steps. It consists of a parallel kd-tree search step that searches the kd-tree in parallel and safely extracts the data of the leaf node including the query, and a parallel data search step through multiple threads for retrieving the data included in the query area. On the other hand, the proposed algorithm provides high query processing performance through parallelization of secure protocols and index search. We show that the performance of the proposed parallel range query processing algorithm increases in proportion to the number of threads and the proposed algorithm shows performance improvement by about 5 times compared with the existing algorithm.

Development of Computer Vision System for Individual Recognition and Feature Information of Cow (I) - Individual recognition using the speckle pattern of cow - (젖소의 개체인식 및 형상 정보화를 위한 컴퓨터 시각 시스템 개발 (I) - 반문에 의한 개체인식 -)

  • 이종환
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.151-160
    • /
    • 2002
  • Cow image processing technique would be useful not only for recognizing an individual but also for establishing the image database and analyzing the shape of cows. A cow (Holstein) has usually the unique speckle pattern. In this study, the individual recognition of cow was carried out using the speckle pattern and the content-based image retrieval technique. Sixty cow images of 16 heads were captured under outdoor illumination, which were complicated images due to shadow, obstacles and walking posture of cow. Sixteen images were selected as the reference image for each cow and 44 query images were used for evaluating the efficiency of individual recognition by matching to each reference image. Run-lengths and positions of runs across speckle area were calculated from 40 horizontal line profiles for ROI (region of interest) in a cow body image after 3 passes of 5$\times$5 median filtering. A similarity measure for recognizing cow individuals was calculated using Euclidean distance of normalized G-frame histogram (GH). normalized speckle run-length (BRL), normalized x and y positions (BRX, BRY) of speckle runs. This study evaluated the efficiency of individual recognition of cow using Recall(Success rate) and AVRR(Average rank of relevant images). Success rate of individual recognition was 100% when GH, BRL, BRX and BRY were used as image query indices. It was concluded that the histogram as global property and the information of speckle runs as local properties were good image features for individual recognition and the developed system of individual recognition was reliable.

Mining Search Keywords for Improving the Accuracy of Entity Search (엔터티 검색의 정확성을 높이기 위한 검색 키워드 마이닝)

  • Lee, Sun Ku;On, Byung-Won;Jung, Soo-Mok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.451-464
    • /
    • 2016
  • Nowadays, entity search such as Google Product Search and Yahoo Pipes has been in the spotlight. The entity search engines have been used to retrieve web pages relevant with a particular entity. However, if an entity (e.g., Chinatown movie) has various meanings (e.g., Chinatown movies, Chinatown restaurants, and Incheon Chinatown), then the accuracy of the search result will be decreased significantly. To address this problem, in this article, we propose a novel method that quantifies the importance of search queries and then offers the best query for the entity search, based on Frequent Pattern (FP)-Tree, considering the correlation between the entity relevance and the frequency of web pages. According to the experimental results presented in this paper, the proposed method (59% in the average precision) improved the accuracy five times, compared to the traditional query terms (less than 10% in the average precision).