• Title/Summary/Keyword: Query Index

Search Result 410, Processing Time 0.024 seconds

Query Rewriting and Indexing Schemes for Distributed Systems based on the Semantic Web (시맨틱 웹 기반의 분산 시스템을 위한 질의 변환 및 인덱싱 기법)

  • Chae, Kwang-Ju;Kim, Youn-Hee;Lim, Hae-Chull
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.7
    • /
    • pp.718-722
    • /
    • 2008
  • Ontology plays an important role of the Semantic Web to describe meaning and reasoning of resources. Ontology has more rich expressive power through OWL that is a next standard representation language recommended by W3C. As the Semantic Web is widely known, an amount of information resources on the Web is growing rapidly and the related information resources are placed in distributed systems on the Web. So, for providing seamless services without the awareness of far distance, efficient management of the distributed information resources is required. Especially, sear ching fast for local repositories that include data related to user's queries is important to the performance of systems in the distributed environment. In this paper, first, we propose an index structure to search local repositories related to queries in the distributed Semantic Web. Second, we propose a query rewriting strategy to extend given user's query using various expression of OWL. Through the proposed index and query strategy, we can utilize various expressions of OWL and find local repositories related to all query patterns on the Semantic Web.

Adaptive Range Aggregation Index Method for Efficient Spatial Range Query in Ubiquitous Sensor Networks (USN환경에서 효율적인 공간영역질의를 위한 적응형 영역 집계 인덱스 기법)

  • Li, Yan;Eo, Sang-Hun;Cho, Sook-Kyoung;Lee, Soon-Jo;Bae, Hae-Yeong
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.93-107
    • /
    • 2007
  • In this paper, an adaptive range aggregation spatial index method is proposed for spatial range query in ubiquitous sensor networks. As the ubiquitous sensor networks are the new information-oriented paradigm, many energy efficient spatial range query methods in ubiquitous sensor networks environment are studied vigorously. In sensor networks, users can monitor environment scalar data such as temperature and humidity during user defined time and spatial ranges. In order to execute spatial range query efficiently, rectangle based index methods are proposed, such as SPIX. But they define the return path as the opposite of its query transmit path. However, the sensor nodes in queried ranges are closed to each other, they can't aggregate the sensed value in a queried range because their query transmission paths are different. As a result, the previous methods waste energy unnecessarily to aggregate sensing data out of the queried range. In this paper, an adaptive aggregation index method is proposed that can aggregate values in a user defined range adaptively by using its neighbor information. It is shown that sensor power is saved efficiently by using the proposed method over the performance evaluation.

  • PDF

Cache Sensitive T-tree Main Memory Index for Range Query Search (범위질의 검색을 위한 캐시적응 T-트리 주기억장치 색인구조)

  • Choi, Sang-Jun;Lee, Jong-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1374-1385
    • /
    • 2009
  • Recently, advances in speed of the CPU have for out-paced advances in memory speed. Main-memory access is increasingly a performance bottleneck for main-memory database systems. To reduce memory access speed, cache memory have incorporated in the memory subsystem. However cache memories can reduce the memory speed only when the requested data is found in the cache. We propose a new cache sensitive T-tree index structure called as $CST^*$-tree for range query search. The $CST^*$-tree reduces the number of cache miss occurrences by loading the reduced internal nodes that do not have index entries. And it supports the sequential access of index entries for range query by connecting adjacent terminal nodes and internal index nodes. For performance evaluation, we have developed a cost model, and compared our $CST^*$-tree with existing CST-tree, that is the conventional cache sensitive T-tree, and $T^*$-tree, that is conventional the range query search T -tree, by using the cost model. The results indicate that cache miss occurrence of $CST^*$-tree is decreased by 20~30% over that of CST-tree in a single value search, and it is decreased by 10~20% over that of $T^*$-tree in a range query search.

  • PDF

A Keyword Query Processing Technique of OWL Data using Semantic Relationships (의미적 관계를 이용한 OWL 데이터의 키워드 질의 처리 기법)

  • Kim, Youn Hee;Kim, Sung Wan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.59-72
    • /
    • 2013
  • In this paper, we propose a keyword query processing technique based on semantic relationships for OWL data. The proposed keyword query processing technique can improve user's search satisfaction by performing two types of associative search. The first associative search uses information inferred by the relationships between classes or properties during keyword query processing. And it supports to search all information resources that are either directly or indirectly related with query keywords by semantic relationships between information resources. The second associative search returns not only information resources related with query keywords but also values of properties of them. We design a storage schema and index structures to support the proposed technique. And we propose evaluation functions to rank retrieved information resources according to three criteria. Finally, we evaluate the validity and accuracy of the proposed technique through experiments. The proposed technique can be utilized in a variety of fields, such as paper retrieval and multimedia retrieval.

An Efficient PAB-Based Query Indexing for Processing Continuous Queries on Moving Objects

  • Jang, Su-Min;Song, Seok-Il;Yoo, Jae-Soo
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.691-693
    • /
    • 2007
  • Existing methods to process continuous range queries are not scalable. In particular, as the number of continuous range queries on a large number of moving objects becomes larger, their performance degrades significantly. We propose a novel query indexing method called the projected attribute bit (PAB)-based query index. We project a two-dimensional continuous range query on each axis to get two one-dimensional bit lists. Since the queries are transformed to bit lists and query evaluation is performed by bit operations, the storage cost of indexing and query evaluation time are reduced significantly. Through various experiments, we show that our method outperforms the containment-encoded squares-based indexing method, which is one of the most recently proposed methods.

  • PDF

Using Query Word Senses and User Feedback to Improve Precision of Search Engine (검색엔진의 정확률 향상을 위한 질의어 의미와 사용자 반응 정보의 이용)

  • Yoon, Sung-Hee
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.4
    • /
    • pp.81-92
    • /
    • 2009
  • This paper proposes a technique for improving performance using word senses and user feedback in web information retrieval, compared with the retrieval based on ambiguous user query and index. Disambiguation using query word senses can eliminating the irrelevant pages from the search result. According to semantic categories of nouns which are used as index for retrieval, we build the word sense knowledge-base and categorize the web pages. It can improve the precision of retrieval system with user feedback deciding the query sense and information seeking behavior to pages.

Construction of Theme Melody Index by Transforming Melody to Time-series Data for Content-based Music Information Retrieval (내용기반 음악정보 검색을 위한 선율의 시계열 데이터 변환을 이용한 주제선율색인 구성)

  • Ha, Jin-Seok;Ku, Kyong-I;Park, Jae-Hyun;Kim, Yoo-Sung
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.547-558
    • /
    • 2003
  • From the viewpoint of that music melody has the similar features to time-series data, music melody is transformed to a time-series data with normalization and corrections and the similarity between melodies is defined as the Euclidean distance between the transformed time-series data. Then, based the similarity between melodies of a music object, melodies are clustered and the representative of each cluster is extracted as one of theme melodies for the music. To construct the theme melody index, a theme melody is represented as a point of the multidimensional metric space of M-tree. For retrieval of user's query melody, the query melody is also transformed into a time-series data by the same way of indexing phase. To retrieve the similar melodies to the query melody given by user from the theme melody index the range query search algorithm is used. By the implementation of the prototype system using the proposed theme melody index we show the effectiveness of the proposed methods.

Query Processing using Information of Parent Nodes in Partitioned Inverted Index Tables (분할된 역 인덱스 테이블에서 부모노드의 정보를 이용한 질의 처리)

  • Kim, Myung-Soo;Hwang, Byung-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.905-913
    • /
    • 2008
  • Many heterogeneous XML documents are being widely used with the increasing employment of XML, and the importance of data structure research for more efficient document management has been growing steadily. We propose a query processing technique which uses parent node information in a partitioned inverted index tree. The searching efficiency of these heterogeneous documents is greatly influenced by the number of query processing and the amount of target data sets in many ways. Therefore, considering these two factors is very important for designing a data structure. First, our technique stores parent node's information in an inverted index table. Then using this information, we can reduce the number of query processing by half. Also, the amount of target data sets can be lessoned by using partitioned inverted index table. Some XML documents collected from the Internet will be used to demonstrate the new method, and its high efficiency will be compared with some of the existing searching methods.

  • PDF

A Query Result Integrity Assurance Scheme Using an Order-preserving Encryption Scheme in the Database Outsourcing Environment (데이터베이스 아웃소싱 환경에서 순서 보존 암호화 기법을 이용한 질의 결과 무결성 검증 기법)

  • Jang, Miyoung;Chang, Jae Woo
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • Recently, research on database encryption for data protection and query result authentication methods has been performed more actively in the database outsourcing environment. Existing database encryption schemes are vulnerable to order matching and counting attack of intruders who have background knowledge of the original database domain. Existing query result integrity auditing methods suffer from the transmission overhead of verification object. To resolve these problems, we propose a group-order preserving encryption index and a query result authentication method based on the encryption index. Our group-order preserving encryption index groups the original data for data encryption and support query processing without data decryption. We generate group ids by using the Hilbert-curve so that we can protect the group information while processing a query. Finally, our periodic function based data grouping and query result authentication scheme can reduce the data size of the query result verification. Through performance evaluation, we show that our method achieves better performance than an existing bucket-based verification scheme, it is 1.6 times faster in terms of query processing time and produces verification data that is 20 times smaller.

n-Gram/2L: A Space and Time Efficient Two-Level n-Gram Inverted Index Structure (n-gram/2L: 공간 및 시간 효율적인 2단계 n-gram 역색인 구조)

  • Kim Min-Soo;Whang Kyu-Young;Lee Jae-Gil;Lee Min-Jae
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.12-31
    • /
    • 2006
  • The n-gram inverted index has two major advantages: language-neutral and error-tolerant. Due to these advantages, it has been widely used in information retrieval or in similar sequence matching for DNA and Protein databases. Nevertheless, the n-gram inverted index also has drawbacks: the size tends to be very large, and the performance of queries tends to be bad. In this paper, we propose the two-level n-gram inverted index (simply, the n-gram/2L index) that significantly reduces the size and improves the query performance while preserving the advantages of the n-gram inverted index. The proposed index eliminates the redundancy of the position information that exists in the n-gram inverted index. The proposed index is constructed in two steps: 1) extracting subsequences of length m from documents and 2) extracting n-grams from those subsequences. We formally prove that this two-step construction is identical to the relational normalization process that removes the redundancy caused by a non-trivial multivalued dependency. The n-gram/2L index has excellent properties: 1) it significantly reduces the size and improves the Performance compared with the n-gram inverted index with these improvements becoming more marked as the database size gets larger; 2) the query processing time increases only very slightly as the query length gets longer. Experimental results using databases of 1 GBytes show that the size of the n-gram/2L index is reduced by up to 1.9${\~}$2.7 times and, at the same time, the query performance is improved by up to 13.1 times compared with those of the n-gram inverted index.