• Title/Summary/Keyword: Quenching conditions

Search Result 191, Processing Time 0.022 seconds

Variation of Microstructure and Property of the Electro-slag Remelted M2 Steel with Heat Treatment Conditions (ESR한 M2강의 열처리에 따른 미세조직 및 물성 변화)

  • Lee, Ki-Jong;Kim, Moon-Hyun;Lee, Jeong-Keun;Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.281-287
    • /
    • 2002
  • In order to investigate the variation of microstructure and property of the Electro-slag Remelted M2 steel, microstructure observation, hardness, and bending test were performed by using optical microscope. SEM/EDS, rockwell hardness tester, charpy impact tester and bending tester, respectively. It was revealed that the number of inclusions and content of gas elements(S, O, N) in M2 steel fabricated by ESR process decreased markedly compared to those of AIM. It seems to be due to refining effect of ESR process. The volume fraction of carbides in quenched and tempered specimens after austenitizing at 1150$^{\circ}C$ and 1240$^{\circ}C$ was measured. The volume fraction of grain boundary carbides were found to be similar for both specimens. However, The volume fraction of carbides in grain decreased with an increase of austenitizing temperature. When specimen was austenitized at 1150$^{\circ}C$, grain boundary carbides showed needle like morphology. But, the carbides were broken with an increase of austenitizing temperature. The specimen austenitized at 1240$^{\circ}C$ showed higher hardness and lower bending strength compared to that of 1150$^{\circ}C$. As expected, toughness increased with sub-zero quenching treatment.

The Effects of Nozzle Shapes and Pressures on Boundary Layer Flashback of Hydrogen-Air Combustor (수소 전소용 연소 노즐 형상과 연소실 압력이 경계층 역화에 미치는 영향)

  • WON JUNE LEE;JEONGJAE HWANG;HAN SEOK KIM;KYUNGWOOK MIN;MIN KUK KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.776-785
    • /
    • 2022
  • Hydrogen combustion in modern gas-turbine engine is the cutting edge technology as carbon-free energy conversion system. Flashback of hydrogen flame, however, is inevitable and critical specially for premixed hydrogen combustion. Therefore, this experimental investigation is conducted to understand flashback phenomenon in premixed hydrogen combustion. In order to investigate flashback characteristics in premixed hydrogen (H2)/air flame, we focus on pressure conditions and nozzle shapes. In general, quenching distance reduces as pressure of combustion chamber increases, causing flashback from boundary layer near wall. The flashback regime for reference and modified candidate configurations can broadly appear with increasing combustion chamber pressure. The later one can improve flashback-resist by compensating flow velocity at wall. Also, improved wall flow velocity profile of suggested contraction nozzle prevents entire flashback but causes local flashback at nozzle exit.

Characterization of Quorum-Quenching Bacteria Isolated from Biofouled Membrane Used in Reverse Osmosis Process (Biofouling이 일어난 역삼투막에서 분리한 쿼럼 저해 세균의 특성)

  • Moon, Sooyoung;Huang, Xinxin;Choi, Sung-Chan;Oh, Young-Sook
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • Acyl homoserine lactone (AHL) lactonase has been proved to be the AHL-degrading enzyme with the highest substrate specificity for AHL molecules and has shown a considerable potential as low-cost and efficient quorum quenching (QQ) technique. However, few studies focused on its inhibitory effect on biofilm formation which is also a quorum sensing (QS)-regulated phenomenon. In this study, QQ activity of six isolates from biofouled reverse osmosis membranes was studied using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NTL4 as biosensors under various conditions. All of the isolates belonged to the genus Bacillus and showed QQ activity regardless of the acyl chain length or substitution of AHL molecule. The isolates were capable of significantly inhibiting biofilm formation (46.7-58.3%) by Pseudomonas aeruginosa PAO1 and produced heat-sensitive extracellular QQ substances. The LC-MS analysis of the QQ activity of a selected isolate, RO1S-5, revealed the degradation of N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 AHL) and the production of corresponding acyl homoserine (3-oxo-C12-HS), which indicated the activity of AHL lactonase. The broad AHL substrate range and high substrate specificity suggested that the isolate would be useful for the control of biofilm-related pathogenesis and biofouling in industrial processes.

Optimization of Conditions of Forming Quality for Hot-press-formed Lower Control Arm Using Finite Element Analysis (유한요소해석을 이용한 열간프레스성형 적용 로어 컨트롤 암의 성형품질 조건 최적화)

  • Son, Hyun-Sung;Choi, Byung-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Hot-Press-Forming (HPF), an advanced sheet metal forming method using stamping at a high temperature of about $900^{\circ}C$ and quenching in an internally cooled die set, is one of the most successful forming process in producing crash-resistant parts such as pillars and bumpers with complex shape, ultrahigh strength, and minimum springback. To optimize conditions of a forming quality in HPF process and secure a safe product without any failures, such as fractures and wrinkling, the simulations based on the coupled thermo-mechanical analysis for a hot-press-formed lower control arm are applied with Taguchi's orthogonal array experiment. Three factor variables - the friction coefficient, blank shape, and hole location for burring - are selected to be optimized. The most effective condition of a forming quality for a hot-press-formed lower control arm is suggested. The simulation results are confirmed with experimental ones.

Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications

  • Park, Jin-seong;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.267-276
    • /
    • 2019
  • The purpose of this study was to examine the influence of conditions for quenching and/or tempering on the corrosion and hydrogen diffusion behavior of ultra-strong automotive steel in terms of the localized plastic strain related to the dislocation density, and the precipitation of iron carbide. In this study, a range of analytical and experimental methods were deployed, such as field emission-scanning electron microscopy, electron back scatter diffraction, electrochemical permeation technique, slow-strain rate test (SSRT), and electrochemical polarization test. The results showed that the hydrogen diffusion parameters involving the diffusion kinetics and hydrogen solubility, obtained from the permeation experiment, could not be directly indicative of the resistance to hydrogen embrittlement (HE) occurring under the condition with low hydrogen concentration. The SSRT results showed that the partitioning process, leading to decrease in localized plastic strain and dislocation density in the sample, results in a high resistance to HE-induced by aqueous corrosion. Conversely, coarse iron carbide, precipitated during heat treatment, weakened the long-term corrosion resistance. This can also be a controlling factor for the development of ultra-strong steel with superior corrosion and HE resistance.

The Development of Aluminum Alloy Piston for Two-Stroke Cycle Engine by Powder Forging

  • Park, Chul-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.173-177
    • /
    • 2013
  • The purpose of this paper is to investigate the influences on mechanical properties of two-stroke cycle motor pistons manufactured by casting, conventional forging and powder forging, through the comparison of characteristics, merits and disadvantages of each forming technology. For each forming technology, the optimal process parameters were determined through the experiments for several conditions, and microstructure, hardness, tensile strength and elongation of pistons are compared and analyzed. In conventional forging process, material temperature was $460^{\circ}C$ and the die temperature was $210^{\circ}C$ for the Al 4032. The optimal condition was found as solution treatment under $520^{\circ}C$ for 5 hours, quenching with $23^{\circ}C$ water, and aging under $190^{\circ}C$ for 5 hours. In powder forging process, the proper composition of material was determined and optimal sintering conditions were examined. From the experiment, 1.5% of Si contents on the total weight, $580^{\circ}C$ of sintering temperature, and 25 minutes of sintering time were determined as the optimal process condition. For the optimal condition, the pistons had 76.4~78.3 [HRB] of hardness, and 500 [MPa] of tensile strength after T6 heat treatment.

Mercury-Induced Light-Dependent Alterations of Chlorophyll a Fluorescence Kinetics in Barley Leaves

  • Lee, Choon-Hwan
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.11-18
    • /
    • 1995
  • Mercury-induced changes in Chl a fluorescence induction kinetics of scratched barley leaf segments were dependent on the presence of light. By the treatment of 50$\mu$M HgCl2 under light condition, Fm and Fp were decreased. However, they were not significantly reduced under dark condition even after 2 h of mercury treatment. Under dark condition the decrease in variable fluorescence (Fv) after P transient was blocked within 20 min of the treatment. The analysis of fast fluorescence rise curve suggests that the inhibitory site of mercury under both light and dark conditions is not at QB binding site and the inhibition does not involve the increase in inactive PSII centers. Under light condition the decrease in Fp was partially recovered by addition of 50 $\mu$M NH2OH. These results suggest that a major inhibitory site of mercury under dark condition is at the reducing side of PSII and the site under light condition is at the oxidizing side of PSII possibly in addition to the one under dark condition. Under both light and dark conditions, energy-dependent quenching(qE) was alomost completely repressed within 20 min of mercury treatment and noticible change in Fo was not observed. The qE repression is probably due to the blockage of transthylakoid ΔpH formation.

  • PDF

The Effect of Thickness and Solidification Rate on the Rapidly Solidified Structure of Al-Cr Alloys (급냉응고(急冷凝固)한 Al-Cr계합금(系合金)의 응고조직(凝固組織)에 미치는 응고속도(凝固速度)와 두께의 영향)

  • Cho, Soon-Hyoung;Nam, Tae-Yoon;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.5 no.2
    • /
    • pp.118-124
    • /
    • 1985
  • The thickness ranges and conditions to form the supersaturated solid solution in Al-Cr alloys were investigated with various rapid solidification conditions. Al-Cr alloys, rapidly solidified by using the small droplet chill quenching method, were examined by means of micro-vickers hardness, lattice parameter, thermal analysis and microscopic observation. The results obtained were as follows; 1. With the increase of solidification rate, the solidified structures were changed to intermetallic compound + solid solution, incompletely supersaturated solid solution, completely supersaturated solid solution, in turn. 2. The minimum solidification rate required to form completely supersaturated solid solution was $2.5{\times}10^{-2}cm/sec$, $3.6{\times}10^{-2}cm/sec$ and $6.0{\times}10^{-2}cm/sec$ for Al-1.0wt%Cr, Al-1,2wt%Cr and Al-1.5wt%Cr, respectively. 3. The maximum distance from the chill surface required to form completely supersaturated solid solution was 5mm, 1.3mm and 0.3mm for Al-1.0wt%Cr, Al-1.2wt%Cr and Al-1.5wt% Cr, respectively.

  • PDF

Enhancement of Downward-Facing Saturated Boiling Heat Transfer by the Cold Spray Technique

  • Sohag, Faruk A.;Beck, Faith R.;Mohanta, Lokanath;Cheung, Fan-Bill;Segall, Albert E.;Eden, Timothy J.;Potter, John K.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.124-133
    • /
    • 2017
  • In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as "cold spray" that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.

A study on Mechanical and Fatigue Properties of Spheroidal Graphite Cast Iron (구상흑연주철의 기계적 성질및 피로특성에 관한 연구)

  • Park, No-Gwang;Kim, Chang-Ju;Jun, Eui-Jin
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.83-93
    • /
    • 1982
  • The influence of different heat treatment conditions on microstructure, mechanical and fatigue properties of Spheroidal Graphite cast Iron with 0.4-0.6% Mn was investigated. 1) Maximum tensile strength was arrived by tempering at about $450^{\circ}C$after quenching. Tempering at higher than $600^{\circ}C$ was changed martensitic structure to ferritic structure and secondary graphites were precipitated. 2) The relationship between matrix hardness and total hardness of the specimens are as following. [HB]$T$=0.7[HB] [HB]$M$+35 Maximum tensile strength was arrived at the total hardness of HB400-450. 3) Endurance ratio decreases with increasing total hardness, and fatigue limits can be presumed from as following. $\sigmaf$=$\sigmat$

  • PDF