• Title/Summary/Keyword: Quenched and Tempered High Strength Steel

Search Result 22, Processing Time 0.029 seconds

Microstructural Changes on Weld Heat Input in $60kg/mm^2$ Quenched and Tempered High Strength Steel ($60kg/mm^2$급 조질고장력강의 용접입열량에 따른 미세조직변화)

  • 김은석;정인상;박경채
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.79-90
    • /
    • 1993
  • Shielded metal arc welding, one-ploe and two-pole submerged arc welding were accomplished to investigate microstructure changes on phase transformation behavior in $60kg/mm^2$ quenched and tempered high strength steel. Microstructures were examined by optical micrograph and TEM. In shielded metal arc welding (oxygen 250ppm), the inclusions were small size (0.3-0.5$\mu\textrm{m}$)and small in number. In submerged arc welding (oxygen 430-529ppm), the inclusions were larger(0.7-2$\mu\textrm{m}$) than that of shielded metal arc welding and large in number. Microstructure mainly depends on number and distribution of inclusions in fusion zone of weld metal. It was noticed that a limited number of inclusions favors the formation of acicular ferrite.

  • PDF

Effect of chemical composition on the weldability of quenched and tempered high strength steels (주질고장력강의 용접성에 미치는 화학조성의 영향)

  • 장웅성;김숙환;장래웅;엄기원
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.27-36
    • /
    • 1988
  • In fabrication of various welded structures made of high strength steels, the occurence of hydrogen assisted cracking and embrittlement in HAZ is prime importance. The present work was carried out to clarify the effect of chemical compositions, especially B and/or Ti addition on the cold cracking susceptibility and HAZ embrittlement in low crabon equivalent steel. Tests results showed that the addtio of optimum boron content in steel with low Pem value i.e., below 0.20 % was the best way to improve the weldability as well as the mechanicla properties of $60kg/mm^2$ grade quenched and tempered high strength steels.

  • PDF

The Change of Mechanical Properties on Weld Heat Input in 60kg/mm2 Quenched and Tempered High Strength Steel (60kg/mm2급 조질고장력강의 용접입열량에 따른 기계적 특성 변화)

  • Kim, O.S.;Park, K.C.;Chung, I.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.35-43
    • /
    • 1994
  • For the purpose of studying the change of mechanical properties of weld parts, shielded metal are welding, one-pole and two-pole submerged arc welding were accomplished weldability on $60kg/mm^2$ quenched and tempered high strength steel. Charpy impact values of the weld metal in welded parts by SMAW and SAW were lower than those of the heat affected zone and increased in order of bond, coarsened, refined and carbon spheroidized regions in the heat affected zone. Grain size of prior austenite or M-A constituent did not significantly affect toughness of welded parts, but precipitated carbide films which forms at the grain boundaries or within matrix and volume fraction of pearilte were most important factor for toughness.

  • PDF

Effects of Tempering on Tensile Properties of Medium-Carbon Low-Alloy Steels (중탄소 저합금강의 인장성질에 미치는 템퍼링의 영향)

  • Lee, Young-Kook;Krauss, George
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.327-337
    • /
    • 1999
  • A series of Ni-Cr-Mo alloy steels were austenitized, quenched to martensite, and tempered at various temperature and time conditions. Tensile testing was conducted at room temperature with cylindrical specimens, and hardness was measured using Rockwell hardness tester. In the tempering stage I, high strain hardening and yield strength accounted for the high ultimate strength and hardness. In the tempering stage II, strengths and hardness linearly decreased with increasing tempering temperature. Specimens tempered in the temperin stage III showed incipient discontinuous yielding and tensile strengths only slightly higher than yield strengths. Ductilities decreased slightly in specimens tempered in the tempered martensite embrittlement range, and severely decreased in specimens tempered for 10 hours at $500^{\circ}C$ in the temper embrittlement range. Specimens tempered at $600^{\circ}C$ for 10 hours showed recrystallized microstructures, a number of fine dimples, and increased strain hardening, probably due to the precipitation of alloy carbides. The simple formulae for the mechanical properties of these steels were suggested as a function of carbon content and Hollomon-Jaffe tempering parameter.

  • PDF

A Study on Growth Characteristics of the Surface Fatigue Crack Propagated from a Small Surface Defect in Carbon Steels (탄소강재(炭素鋼材)의 작은 표면결함(表面缺陷)에서 성장(成長)하는 표면피로(表面疲勞)균열의 성장특성(成長特性)에 관한 연구(硏究))

  • Chang-Min,Suh;Yong-Goo,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.35-42
    • /
    • 1984
  • In the present study, rotating bending fatigue tests have been carried out in three kinds of carbon steel specimens; an annealed low carbon steel, an annealed high carbon steel and quenched-tempered high carbon steel; with a small artificial surface defect that might exist in real structures. Fatigue crack lengths have been observed by a method of replication in order to investigate the growth characteristic of fatigue crack in the viewpoints of strength of materials and fracture mechanics. The main results obtained are as follows: 1) The effect of a small surface defect upon the reduction of fatigue limit is considerably large, and the rate of fatigue limit reduction grows in the following order; annealed low carbon steel(mild steel), annealed high carbon steel, quenched-tempered high carbon steel. 2) When the growth rate of surface crack length(2a) was investigated in the viewpoints of fracture mechanics based upon $ ${\Delta}K_{\varepsilon}$, the dependence of stress level and of surface defect size disappear, and there exists a linear relationships between d(2a)/dN and ${\Delta}K_{{\varepsilon}t},\;\Delta_{{\varepsilon}t}\sqrt{{\pi}a}$, on log. plot, i.e, $d(2a)/dN={C{\cdot}{\Delta}K_{\varepsilon}}^3_t$, where ${\Delta}_{{\varepsilon}t}\sqrt{{\pi}a}$ a is the cyclic total strain intensity factor range.

  • PDF

Development of Chassis Parts Using High Toughness Micro-alloyed Steel (고인성 비조질강 샤시부품 개발)

  • Lee, Si-Yup;Kim, Hyuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • This paper developed the chassis part as micro-alloyed steel with high toughness. The performance of micro-alloy steels are superior to similar heat treated steels. The strengthening effects of vanadium make micro-alloyed steels particularly suited for high-strength-steel applications. The disadvantages are that ductility and toughness are not as good as quenched and tempered (Q&T) steels. Precipitation hardening increases strength but may contribute to brittleness. Toughness can be improved by reducing carbon content and titanium additions. dispersed titanium nitrides (TiN) formed by titanium additions effectively prevents grain coarsening. Grain refinement increases strength but also improves toughness. For the chassis parts using high toughness micro-alloy steel, it had proven superior to a plain steel forging by static strength test and endurance test.

The Influence of Stress Relieving on Microstructures and Mechanical Properties of Weld Metal in 60kg/mm2 Quenched and Tempered High Strength Steel (응력제거 열처리가 60kg/mm2급 조질 고장력강의 용접부 미세조직과 기계적 특성에 미치는 영향)

  • Kim, O.S.;Chung, I.S.;Park, K.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.144-151
    • /
    • 1993
  • For the purpose of studying the influence of stress relieving on microstructures and mechanical properties of weld metal, manual arc welding, onepole and twopole submerged arc welding were accomplished on $60kg/mm^2$ quenched and tempered high strength steel. After stress relieving, a lot of carbides were precipitated, developed and subsequently coarsened at the grain boundaries and within matrix due tn multiple tempering effect in manual arc welding, resulting in deterioated toughness. Meanwhile pearlite and cementite films were spheroidized and shortened in submerged arc welding, resulting in improved considerable toughness. It was observed that main effect of stress relieving was to reduce solut supersaturation by nucleation and growth of carbide precipitates, and stress relieving led to some reduction in the yield and tensile strenath but did not significantly affect elongation.

  • PDF

A Study on the Toughness of Die Steel Coated with VC (vanadium carbide) by Immersing in Molten Borax Bath (용융염 침적법에 의한 VC Coating 금형강의 인성에 관한 연구)

  • Lee, B.K.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.59-69
    • /
    • 1993
  • Bending fracture strength test and impact strength test were made for VC coated die steels treated by immersing in molten borax bath and for hardened steels which were quenched and tempered, in order to clarify the effect of VC coating at $1000^{\circ}C$. The material used in this investigation was representative cold and hot work die steels STD11, STD61. The results obtained are as follows. 1) The bending fracture strength of VC coated die steel (STD11, STD61) was lessened with increasing the thickness of the VC coated layer. 2) With increasing the immersing time (imcreasing the thickness of the VC coated layer) the maximum hardness was obtained at 480 minutes holding, after that holding time hardness was decreased. 3) The impact strength of the VC coated die steel was not decreased. In the casse of STD11, it was higher than that of the quenched condition especially at low tempering temperature, and vice versa at high tempering temperature. However in the case of STD61 shows the result to the contrary.

  • PDF

Effects of microstructure and welding heat input on the toughness of weldable high strength steel weldments (용접구조용 고장력강의 용접부 인성에 미치는 미세 조직과 용접 입열량의 영향)

  • 장웅성;방국수;엄기원
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.44-54
    • /
    • 1989
  • This study was undertaken to evaluate the allowable welding heat input range for high strength steels manufactured by various processes and to compare the weldability of TMCP steel for high heat input welding with that of conventional Ti-added normalized steel. The allowable welding heat input ranges for conventional 50kg/$mm^2$ steel to guarantee D or E grade of ship structural steel were below 150 and 80kJ/cm respectively. Such a limit in welding heat input was closely related with the formation of undesirable microstructures, such as grain boundary ferrite and ferrite side plate in the coarse grain HAZ. In case of 60 and 80kg/$mm^2$ quenched and tempered steels, for securing toughness in weldments over toughness requirements for base metal, each welding heat input had to be restricted below 60 and 40kJ/cm, that was mainly due to coarsened polygonal ferrite in weld metal and lower temperature transformation products in coarse grain HAZ. The TMCP steel could be appropriate as a grade E ship hull steel up to 200kJ/cm, but the Ti-added normalized steel could be applied only below 130kJ/cm under the same rule. This difference was partly owing to whether uniform and fine intragranular ferrite microstructure was well developed in HAZ or not.

  • PDF

Study on the Application of Ion-nitrided Treatment to Improve the Mechanical Properties of Carbon Steel (회소강의 기계적 성질을 개선하기 위한 이온질화 처리의 응용에 관한 연구)

  • 강명순;윤종학;이원평
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.28-33
    • /
    • 1987
  • This thesis is to improve the mechanical properties of carbon steel by the ion-nitriding, and post-heat treatment. The structures of ion-nitrided SM45C steel were changed to martensite by quenching from 730.deg. C and 800.deg. C. And then a few of the quenched specimens was tempered at 200.deg. C for 120 min. The emphasis in this study is focussed on Comparison of hardness and fatigue strength with the ion-nitrided steel. The results obtained are summerized as follows. 1. To improve the hardness and fatigue strength of ion-nitrided steels, it is effective to under take diffusion treatment for a short time at the austenite temperature(800.deg. C). 2. If ion-nitrided steel is heated for a long time at high temperature, de-nitriding occure. 3. The quenching treatment after nitriding on the carbon steel is necessary to improve the mechanical properties of the steels.

  • PDF