• Title/Summary/Keyword: Quench tank

Search Result 2, Processing Time 0.015 seconds

An Experimental Study of Thermal Mixing of Steam Jet Condensation through an I-Sparser in a Quench Tank (수조내 I-Sparser의 증기제트 응축에 의한 열혼합 실험)

  • Kim Yeon-Sik;Jun Hyeong-Gil;Song Chul-Hwa
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.62-71
    • /
    • 2005
  • An experimental study on thermal mixing of steam jet condensation through the I-Sparger of APR1400 design using B&C (Blowdown and Condensation) test facility. Due to the limit of the steam supply capability of the pressurizer, transient thermal mixing experiments were conducted. Temperature distributions in the quench tank were measured using thermocouples located at various positions. From the experimental data, local temperature variations for various locations and vertically cross-sectional temperature distributions for several times were depicted and presented. The result shows the characteristics of thermal mixing of the I-Sparger depending on the design features of the I-Sparger.

Investigation of a best oxidation model and thermal margin analysis at high temperature under design extension conditions using SPACE

  • Lee, Dongkyu;No, Hee Cheon;Kim, Bokyung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.742-754
    • /
    • 2020
  • Zircaloy cladding oxidation is an important phenomenon for both design basis accident and severe accidents, because it results in cladding embrittlement and rapid fuel temperature escalation. For this reason during the last decade, many experts have been conducting experiments to identify the oxidation phenomena that occur under design basis accidents and to develop mathematical analysis models. However, since the study of design extension conditions (DEC) is relatively insufficient, it is essential to develop and validate a physical and mathematical model simulating the oxidation of the cladding material at high temperatures. In this study, the QUENCH-05 and -06 experiments were utilized to develop the best-fitted oxidation model and to validate the SPACE code modified with it under the design extension condition. It is found out that the cladding temperature and oxidation thickness predicted by the Cathcart-Pawel oxidation model at low temperature (T < 1853 K) and Urbanic-Heidrick at high temperature (T > 1853 K) were in excellent agreement with the data of the QUENCH experiments. For 'LOCA without SI' (Safety Injection) accidents, which should be considered in design extension conditions, it has been performed the evaluation of the operator action time to prevent core melting for the APR1400 plant using the modified SPACE. For the 'LBLOCA without SI' and 'SBLOCA without SI' accidents, it has been performed that sensitivity analysis for the operator action time in terms of the number of SIT (Safety Injection Tank), the recovery number of the SIP (Safety Injection Pump), and the break sizes for the SBLOCA. Also, with the extended acceptance criteria, it has been evaluated the available operator action time margin and the power margin. It is confirmed that the power can be enabled to uprate about 12% through best-estimate calculations.