• Title/Summary/Keyword: Quench properties

Search Result 62, Processing Time 0.028 seconds

Improvement of Quench Properties of a Superconducting Fault Current Limiter Using YBCO Films by Serial and Parallel Combinations (직.병렬 조합에 의한 박막형 초전도 한류기의 퀜치특성 개선)

  • 최효상;김혜림;현옥배
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.315-319
    • /
    • 2003
  • We improved quench properties of a superconducting fault current limiter (SFCL) based on YBCO thin films by their serial and parallel combinations. The SFCL consisted of 6 switching elements fabricated of 4 inch-diameter YBCO thin films. The quench currents of the switching elements were distributed between 33.9 A and 35.6 A. Simple serial connection resulted in imbalanced power dissipation between switching elements even at the quench current difference of 0.6 A. On the other hand, $2{\times}2$ and $3{\times}2$ stack combinations produced simultaneous quenches. The $3{\times}2$ stack combination showed better simultaneous quench behavior than the $2{\times}2$ stacks. This is suggested to be because the currents between switching elements in parallel connection of the $3{\times}2$ stacks were more effectively redistributed than the $2{\times}2$ stacks.

Quench properties of superconducting fault current limiters connected in parallel

  • Kim, Hye-Rim;Park, Hyo-Sang;Park, Kwon-Bae;Hyun, Ok-Bae;Hwang, Si-Dole
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.224-228
    • /
    • 2002
  • We investigated the quench properties of superconducting fault current limiters (SFCLs) connected in parallel. It was carried out as an effort to scale up the current capacity of SFCL toys texts. SFCLs were based on $YBa_2$$Cu_3$$O_{7}$ films coated in-situ with a gold layer and fabricated by patterning the films into 2 mm wide and 42 cm long meander lines by photolithography. Two SFCLS were connected in parallel and tested with simulated AC fault currents. Initially the current was divided unequally into branches of parallel connection due to unequal resistance of the branches. However, once quench started in the SFCLs, the current oscillated between the branches and then was distributed nearly equally between the branches. In other words, the elements quenched simultaneously. The oscillation amplitude decreased as the source voltage was increased: the oscillation was the most prominent near the quench current. The observed oscillation and the consequent simultaneous quench was understood in terms of quench start and development in the SFCLs.

  • PDF

Effects of Shunt Reactors on Quench Performance of the Superconducting Fault Current limiter (션트리액터가 초전도 한류기의 퀜치에 미치는 효과)

  • Lee, Na-Young;Nam, Gueng-Hyun;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Hwang, Jong-Sun;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.296-297
    • /
    • 2005
  • We have investigated the quench performance of shunt reactors in the parallel connection of resistive type superconducting fault current limiter (SFCL) components based on YBCO films. To increase voltage rating, components are connected in series and to increase current level, they are connected in parallel. This method has cauesd the unbalanced quench between each components. To improve the problem, we have compared the quench properties between the current limiting components without and with shunt reactors connected in parallel. To improve the quench performance, across individual SFCL components connected the shunt reactor in parallel. The components with shunt reactors successfully produced simultaneous quench, resulting from the bypass of the fault current in the direction of the shunt reactor.

  • PDF

Simultaneous quenching phenomena of resistive superconducting fault current limiter connected in series (직렬연결된 저항형 한류기의 동시퀜치 현상)

  • 최효상;김혜림;임해용;김인선;현옥배
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.91-94
    • /
    • 2000
  • We fabricated resistive super- conducting fault current limiters (SFCL) based on YBCO thin films grown on 2" diameter $Al_{2}O_{3}$ substrates. Two SFCLs with nearly identical properties. two SFCLs with nearly identical properties were connected in series to investigate simultaneous quenching. There was a difference of several half cycles in their quench starting time, although the difference was not more than 0.1 msec when they were operated separately. This imbalance was removed by connecting a shunt resistor to an SFCL in parallel. Increased power input at high voltages also reduced the initial imbalance in power dissipation. Further efforts on the simultaneous quench in SFCLs connected in series are on the way through methods such as the artificial control of quench speed.peed.

  • PDF

Prediction of Hardness of Hot Stamped Parts Using the Quench Factor Analysis (핫스템핑 공정에서 Quench Factor Analysis를 이용한 제품의 경도 예측)

  • Choi, J.Y.;Ko, D.H.;Seo, P.K.;Cha, S.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.357-362
    • /
    • 2014
  • The purpose of the current study is to predict the hardness distribution in steel products after hot stamping using a quench factor analysis(QFA) coupled with FE-simulations. QFA is a method to predict properties such as hardness and tensile strength based on time-temperature-property(TTP) curves and can determine properties based on the temperature histories. The constants($K_1{\sim}K_5$) of QFA were determined using hardness data obtained after various cooling rates. In the current study, a rear side member was selected for evaluation and FE-simulations were performed to obtain the temperature histories during hot stamping. The predicted temperature data were imported into the QFA to calculate the hardness distribution of the hot stamped parts. A hot stamping experiment of the rear side member was conducted to verify the predicted hardness. The simulation results show good agreement with the experimental measurements.

Quench properties of a resistive superconducting fault current limiter by current redistribution (전류재분배에 의한 저항형 초전도 한류기의 퀜치 특성)

  • Choi, Hyo-Sang;Kim, Hye-Rim;Cha, Sang-Do;Hyun, Ok-Bae;Hwang, Si-Dole
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.336-338
    • /
    • 2002
  • We improved quench properties of a superconducting fault current limiter (SFCL) based on YBCO thin films by their serial and parallel combinations. The SFCL consisted of 6 switching elements fabricated of 4 inch-diameter YBCO thin films. Simple serial connection resulted in imbalanced power dissipation between switching elements even at the quench current difference of 0.6A. On the other hand, $2{\times}2\;and\;3{\times}2$ stack combinations produced simultaneous quenches. The $3{\times}2$ stack combination showed better simultaneous quench behavior than the $2{\times}2$ stacks. This is suggested to be because the currents between switching elements in parallel connection of the $3{\times}2$ stacks were more effectively redistributed than the $2{\times}2$ stacks.

  • PDF

Fault Angle Dependent Resistance of YBCO Coated Conductor with Stainless Steel Stabilizer Layer

  • Du, Ho-Ik;Kim, Min-Ju;Doo, Seung-Gyu;Kim, Yong-Jin;Han, Byoung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.66-69
    • /
    • 2009
  • To manufacture YBCO-coated conductors as superconducting fault current limiters, it is important to conduct researches on their durability. To test their durability, it is necessary to investigate their properties before and after the quench in more severe conditions than in general operating conditions. In this study, their voltage-current and resistance properties were measured before and after a fault current was repetitively applied to them. For the applied voltage, the voltage grades of the YBCO coated conductors were considered. The current amplitude was controlled using protective resistance on an experimental track, and the time and number of applications were fixed to produce the quench occurrence at the fault angles of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$. The operating conditions of the YBCO coated conductors as the main components of superconducting fault current limiters were determined using their voltage properties. The voltage properties of the YBCO coated conductors that were analyzed in this research will be used as important data for their practical application to superconducting fault current limiters.

Development of a resistive superconducting fault current limiter (저항형 초전도 한류기의 개발)

  • Choi, Hyo-Sang;Kim, Hye-Rim;Hyun, Ok-Bae;Hwang, Jong-Sun;Jeong, Dong-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.141-144
    • /
    • 2002
  • We present current limiting properties of 1.2kV/70A superconducting fault current limiter based on YBCO thin films. This is consisted of 6 wafers (3 parallel ${\times}$ 2 serial connection) with 4 inch-diameter YBCO thin film. The quench current Iq of the switching elements vary between 33.9 and 35.6 A. Within the difference of 0.5 A in the sum of quench current Iq in two stacks, the serial connection of the stacks showed the simultaneous quench behavior in applied power of 1.2 kV /70 A.

  • PDF