• Title/Summary/Keyword: Quaternion Interpolation

Search Result 6, Processing Time 0.03 seconds

A Study on Orientations Interpolation of 6-Axis Articulated Robot using Quaternion (쿼터니언을 이용한 6축 로봇 방위보간법에 관한 연구)

  • Ahn, Jin-Su;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.778-784
    • /
    • 2011
  • This paper presents the study on orientations interpolation of 6-axis articulated robot using quaternion. In this paper, we propose a control algorithm between given two orientations of 6-axis articulated robot by using a quaternion with spherical linear interpolation. In order to study the quaternion interpolation, We created Inverse kinematics program and Interpolation program using LabVIE$^{(R)}$. The rotation angle of each axis were calculated using both euler orientations interpolation program and quaternion orientations interpolation program. The proposed control algorithm is shown to be effective in terms of motor angles and torques when compared to a conventional Euler angle interpolation, by using both LabVIEW$^{(R)}$ and RecurDyn$^{(R)}$.

Steering Control Algorithm of a Locomotion Robot Using a Quaternion with Spherical Cubic Interpolation (ICCAS 2005)

  • Chung, Won-Jee;Kim, Ki-Jung;Seo, Young-Kyo;Lee, Ki-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.658-663
    • /
    • 2005
  • This paper presents the steering control algorithm of a locomotion robot using a quaternion. The locomotion robot is to be moved on an irregular floor that can inevitably result in the errors of both position and orientation. Especially the orientation error should be compensated every work in order to adjust the misaligned values of current orientation to those commanded values. In this paper, we propose a new steering control algorithm between the two values by using a quaternion with spherical cubic interpolation. The proposed algorithm is shown to be effective in terms of vibration when compared to a conventional simple compensation without interpolation, by using $MATLAB^{(R)}$ and $VisualNastran4D^{(R)}$.

  • PDF

Steering Control Algorithm of an Up and Down Motion Robot Using a Quaternion with Spherical Cubic Interpolation (쿼터니언의 Spherical Cubic Interpolation 을 이용한 상하이송 로봇의 조향 방법에 관한 연구)

  • Chung W.J.;Kim K.J.;Kim S.H.;Kim H.G.;Seo Y.K.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1832-1835
    • /
    • 2005
  • This paper presents the steering control algorithm of an up and down motion robot using a quaternion. The up and down motion robot is to be moved on an irregular floor that can inevitably result in the errors of both position and orientation. Especially the orientation error should be compensated every work in order to adjust the misaligned values of current orientation to those commanded values. In this paper, we propose a new steering control algorithm between the two values by using a quaternion with spherical cubic interpolation. The proposed algorithm is shown to be effective in terms of vibration when compared to a conventional simple compensation without interpolation, by using $MATLAB^{(R)}$ and $VisualNastran4D^{(R)}$

  • PDF

A Study on the Control for an Outer-hull Preprocessing Robot Using a Quaternion (쿼터니언을 이용한 선체 외판 전처리 로봇 제어에 관한 연구)

  • Chung, Won-Jee;Kim, Ki-Jung;Kim, Sung-Hyun;Lee, Choon-Man;Shin, Ki-Su;Lee, Ki-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents the study in the development of optimal working method for an outer-hull preprocessing robot using a quaternion. The out-hull preprocessing robot consists of feathering and cleaning parts. This robot should be controlled correctly for feathering work because it is to be worked on a curved plate that can result in the errors of orientation. In this paper, we propose a control algorithm between given two orientations of the out-hull preprocessing robot by using a quaternion with spherical linear interpolation. The proposed control algorithm is shown to be effective in terms of motor angles and torques when compared to a conventional Euler angle interpolation, by using both $MATLAB^{\circledR}$ and $VisualNastran4D^{\circledR}$.

Virtual Navigation of Blood Vessels using 3D Curve-Skeletons (3차원 골격곡선을 이용한 가상혈관 탐색 방안)

  • Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • In order to make a virtual endoscopy system effective for exploring the interior of the 3D model of a human organ, it is necessary to generate an accurate navigation path located inside the 3D model and to obtain consistent camera position and pose estimation along the path. In this paper, we propose an approach to virtual navigation of blood vessels, which makes proper use of orthogonal contours and skeleton curves. The approach generates the orthogonal contours and the skeleton curves from the 3D mesh model and its voxel model, all of which represent the blood vessels. For a navigation zone specified by two nodes on the skeleton curves, it computes the shortest path between the two nodes, estimates the positions and poses of a virtual camera at the nodes in the navigation zone, and interpolates the positions and poses to make the camera move smoothly along the path. In addition to keyboard and mouse input, intuitive hand gestures determined by the Leap Motion SDK are used as user interface for virtual navigation of the blood vessels. The proposed approach provides easy and accurate means for the user to examine the interior of 3D blood vessels without any collisions between the camera and their surface. With a simple user study, we present illustrative examples of applying the approach to 3D mesh models of various blood vessels in order to show its quality and usefulness.