• Title/Summary/Keyword: Quasi-static Deformation

Search Result 141, Processing Time 0.023 seconds

A Study on the measurement of Table Deflection using Laser Interferometer and It's Inspection using FEA (레이저 간섭계에 의한 테이블의 처짐측정과 FEA에 의한 이의 검증)

  • 이승수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.204-209
    • /
    • 1998
  • The acceleration of the performance of machine tools influences the development of the semi-conductor and optical technology as the development of NC and measurement technology. We can mention that a traction role of the acceleration for the development like that depends on the development of the measurement technics Stylus instrument method, STM, SEM, Laser interferometer method which are used for measuring the quasi-static error of machine tools. Because the measurement has been done to unload condition without considering of mechanical stiffness in the case of machining center as we measure the quasi-static error of machine tools on general studies, people who works on the spot has many problems on the data value. Therefor we will help working more accurately on the spot by measuring, analyzing, displaying the deflection of the table and support shaft when we load on the table and the support shaft of machining center using laser interferometer. Also we try to settle new conception of the measurement method and more accurate grasp of the deflection tendency by verifing the tendency of the error measured through the comparison of the simulated error using ANSYS, a common finite element analysis program, which is able to measure heat deformation, material deformation, and error resulted form this study.

  • PDF

Impact Fracture Behaviors of Zr-Based Bulk Amorphous Metals (Zr-기 벌크 아몰퍼스 금속의 충격 파괴 거동)

  • Ko, Dong-Kyun;Jeong, Young-Jin;Shin, Hyung-Seop;Oh, Sang-Yeob
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1246-1251
    • /
    • 2003
  • The fracture behaviors of Zr-based bulk amorphous metals(BAMs) having compositions of $Zr_{55}Al_{10}Ni_{5}Cu_{30}$, were investigated under impact loading and quasi-static conditions. For experiments, a newly devised instrumented impact testing apparatus and the subsize Charpy specimens were used. The influences of loading rate and the notch shape on the fracture behavior of the Zr-based BAM were examined. The Zr-based BAMs showed an elastic deformation behavior without any plastic deformation on it before fracture. Most fracture energies were absorbed in the process of the crack initiation. The maximum load and fracture absorbed energy under quasi-static condition were larger than those under impact condition. However, there existed relatively insignificant notch shape effect. Fracture surfaces under impact loading were smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the extent of the vein-like pattern region due to the shear bands developed at the notch tip. It can be found that the fracture energy of the Zr-Al-Ni-Cu alloy is closely related with the development of shear bands during fracture.

  • PDF

Loading Rate Effects During Static Indentation and Impact on Silicon Carbide with Small Sphere (탄화규소에 구형입자의 정적압입 및 충격시 부하속도의 영향)

  • Shin, Hyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3847-3855
    • /
    • 1996
  • In order to study the relationship between static and cynamic behaviors of silion caride, both quasi-static indentaiton and impact experiments of spherical particle have been conducted. The difference inmaterial behavior when using the two mehtods suggests a loading rate difference in the damate pattrern and fracture strength of silicon carbide. This investigation showed some difference in damage pattern according to particla property, especially inthe case of particle impact. There was no differences in deformation behaviors according to the loading rate when the crater profiles were compared with each other at the same contact radius. From the result of residual strength evaluation, it was found that the strength degradation began at the initiation of ring crack and its behavior was colsely related to morphologies of the damage developed which was also dependent upon the extent of deformation atthe loaidng point. In the case of static indentation, there didnot exist the particle property effects onthe strength degradation behavior.

Study of Crush Strength of Aluminum Honeycomb for Shock Absorber of Lunar Lander (달착륙선 충격흡수장치용 알루미늄 허니콤의 Crush Strength에 관한 연구)

  • Kim, Shin;Lee, Hyuk-Hee;Kim, Hyun-Duk;Park, Jung-Sun;Im, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2010
  • Understanding the crushing behaviour of aluminum honeycombs under dynamic loading is useful for crash simulations of vehicles and for design of impacting energy absorbers. In the study of honeycomb crushing under quasi-static, dynamic loading, the most important parameter is crush strength. Crush strength is indicated to energy absorption characteristic of aluminum honeycomb. In this study, Using Finite Element Analysis carried out crush strength of hexagonal aluminum honeycomb then the results was compared with Quasi-static test. Consequently, Crush strength is different in quasi-static loading and dynamic loading about 16%.

  • PDF

Seismic Performance of Concrete-Filled Steel Piers Part II: Pseudo-Dynamic Test and Residual Seismic Capacity (강합성교각의 내진성능평가 Part II: 유사동적실험 및 잔류내진성능 평가)

  • 조창빈;서진환;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 2002
  • Ductile behavior and strength of concrete-filled steel(CFS) piers was supported by many quasi-static cyclic loading tests. This test method, however, only estimates the member′s deformation capacity under escalating and repetitive displacement and ignores dynamic and random aspects of an earthquake load. Therefore, to understand complete seismic behavior of the structure against an earthquake, dynamic tests such as shaking table test and pseudo-dynamic tests are required as well as quasi-static tests. In this paper, following "Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loadint Test", the seismic behavior of CFS and steel piers designed for I-Soo overpass in Seoul in investigated by the pseudo-dynamic test. In addition, the residual strength of both piers after an earthquake is estimated by the quasi-static test. The results show that both piers have satisfactory ductility and strength against well-known EI Centro earthquake although the CFS pier has better strength and energy dissipation than the steel pier.

Development of the Massless Link Model including External Force and Bushing Deformation (외력과 부싱변형을 고려한 무질량 링크 모델 개발)

  • 손정현;최성태;김광석;유완석;이종년
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.163-170
    • /
    • 2001
  • In this paper, a massless link model transmitting external forces is developed to achieve the numerical efficiency in simulation of vehicle suspension systems. Forces acting on links are resolved and transmitted to attached points with a quasi-static assumption. Also, a theoretical derivation and computer implementation of a massless link with bushing elements are proposed. In the massless link with bushing elements, one end is connected to the adjacent body with bushings and the other end is connected with a spherical joint. The deformation of a massless link with bushing elements is theoretically determined by minimizing the potential energy function with quasi-static equilibrium assumption at each time step. Several simulations with a full vehicle model are carried out to compare the efficiency of the developed massless link component. From the results, it is concluded that the proposed approach can reduce the computational time considerably.

  • PDF

Ratcheting analysis of joined conical cylindrical shells

  • Singh, Jaskaran;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.913-929
    • /
    • 2015
  • The ratcheting and strain cyclic behaviour of joined conical-cylindrical shells under uniaxial strain controlled, uniaxial and multiaxial stress controlled cyclic loading are investigated in the paper. The elasto-plastic deformation of the structure is simulated using Chaboche non-linear kinematic hardening model in finite element package ANSYS 13.0. The stress-strain response near the joint of conical and cylindrical shell portions is discussed in detail. The effects of strain amplitude, mean stress, stress amplitude and temperature on ratcheting are investigated. Under strain symmetric cycling, the stress amplitude increases with the increase in imposed strain amplitude. Under imposed uniaxial/multiaxial stress cycling, ratcheting strain increases with the increasing mean/amplitude values of stress and temperature. The abrupt change in geometry at the joint results in local plastic deformation inducing large strain variations in the vicinity of the joint. The forcing frequency corresponding to peak axial ratcheting strain amplitude is significantly smaller than the frequency of first linear elastic axial vibration mode. The strains predicted from quasi static analysis are significantly smaller as compared to the peak strains from dynamic analysis.

Experimental investigation on in-plane seismic behavior of multistory opening masonry walls with two different failure modes

  • Xin, Ren;Bi, Dengshan;Huang, Wei
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.479-488
    • /
    • 2022
  • Aiming to examine different failure patterns in multistory URM walls, two 1/3 scaled three-story and three-bay URM models were designed for the quasi-static loading tests to contrastively investigate the failure processes and characteristics of the multistory URM walls. Two different failure responses were observed with special attention paid to the behavior of spandrel-failure mode. By evaluating the seismic performance and deformation behavior of two test walls, it is demonstrated that spandrels, that haven't been properly designed in some codes, are of great significance in the failure of entire URM walls. Additionally, compared with pier-failure mode, spandrel-failure for multistory URM building is more reasonable and advisable as its effectively participation in energy dissipation and its efficiently improvement on seismic capacity and deformation in the overall structure. Furthermore, the experimental results are beneficial to improve seismic design and optimize reinforcement method of URM buildings.

Determination of True Stress-Strain Curves of Auto-body Plastics Using FEGM (FEGM을 이용한 자동차용 플라스틱의 진응력-변형률 선도 도출)

  • Park, C.H.;Kim, J.S.;Huh, H.;Ahn, C.N.;Choi, S.J
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.223-226
    • /
    • 2009
  • The plastics are widely utilized in the inside of vehicles. The dynamic tensile characteristics of auto-body plastics are important in a prediction of deformation mode of the plastic component which undergoes the high speed deformation during car crash. This paper is concerned with the dynamic tensile characteristics of the auto-body plastics at intermediate strain rates. Quasi-static tensile tests were carried out at the strain rate ranged from 0.001/sec to 0.01/sec using the static tensile machine(Instron 5583). Dynamic tensile tests were carried out at the strain rate ranged from 0.1/sec to 100/sec using the high speed material testing machine developed. Conventional extensometry method is no longer available for plastics, since the deformation of plastic is accompanied with localized deformation. In this paper, quasi-static and dynamic tensile tests were performed using ASTM IV standard specimens with grids and images from a high speed camera were analyzed for strain measurement. True stress-strain relations and the actual strain rates at each deformation step were obtained by processing load data and deformation images, assuming the plastics to deform uniformly in each grid.

  • PDF

Impact of porosity distribution on static behavior of functionally graded plates using a simple quasi-3D HSDT

  • Farouk Yahia Addou;Fouad Bourada;Mustapha Meradjah;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Ali Alnujaie
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.87-97
    • /
    • 2023
  • The bending of a porous FG plate is discussed in this study using a novel higher quasi-3D hyperbolic shear deformation theory with four unknowns. The proposed theory takes into consideration the normal and transverse shear deformation effect and ensures the parabolic distribution of the transverse stresses through the thickness direction with zero-traction at the top and the bottom surfaces of the structure. Innovative porous functionally graded materials (FGM) have through-thickness porosity as a unique attribute that gradually varies with their qualities. An analytical solution of the static response of the perfect and imperfect FG plate was derived based on the virtual work principle and solved using Navier's procedure. The validity and the efficiency of the current model is confirmed by comparing the results with those obtained by others solutions. The comparisons showed that the present model is very efficient and simple in terms of computation time and exactness. The impact of the porosity parameter, aspect ratio, and thickness ratio on the bending of porous FG plate is shown through a discussion of several numerical results.