• Title/Summary/Keyword: Quasi-state

Search Result 504, Processing Time 0.033 seconds

Modeling of Metal Cutting Using Finite Element Method (유한요소법을 이용한 금속절삭의 모델링)

  • 김경우;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1799-1802
    • /
    • 2003
  • The commercial success of a new product is influenced by the time to market. Shorter product leadtimes are of importance in a competitive market. This can be achieved only if the product development process can be realized in a relatively small time period. New cutting inserts are developed by a time consuming trial and error process guided by empirical knowledge of the mechanical cutting process. The effect of previous cutting on chip formation and the surface residual stresses has been studied. The chip formation is not affected much. There is only a minor influence from the residual stress on the surface from tile first cutting on the second pass chip formation. Thus, it is deemed to be sufficient to simulate only the first pass. The influence of the cutting speed and feed on the residual stresses has been computed and verified by the experiments. It is shown that the state of residual stresses in the workpiece increases with the cutting speed. This paper presents experimental results which can be used for evaluating computational models to assure robust solutions. The general finite element code ABAQUS/Standard has been used in the simulations. A quasi-static simulation with adiabatic heating was performed. The path for separating the chip from the workpiece is predetermined. The agreement between measurements and calculation is good considering the simplifications introduced.

  • PDF

Wind load effects and equivalent static wind loads of three-tower connected tall buildings based on wind tunnel tests

  • Ke, Shitang;Wang, Hao;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.967-988
    • /
    • 2016
  • Due to the significant aerodynamic interference from sub-towers and surrounding tall buildings, the wind loads and dynamic responses on main tower of three-tower connected tall building typically change especially compared with those on the isolated single tall building. This paper addresses the wind load effects and equivalent static wind loads (ESWLs) of three-tower connected tall building based on measured synchronous surface pressures in a wind tunnel. The variations of the global shape coefficients and extremum wind loads of main tower structure with or without interference effect under different wind directions are studied, pointing out the deficiency of the traditional wind loads based on the load codes for the three-tower connected tall building. The ESWLs calculation method based on elastic restoring forces is proposed, which completely contains the quasi-static item, inertia item and the coupled effect between them. Then the wind-induced displacement and acceleration responses for main tower of three-tower connected tall building in the horizontal and torsional directions are investigated, subsequently the structural basal and floor ESWLs under different return periods, wind directions and damping ratios are studied. Finally, the action mechanism of interference effect on structural wind effects is investigated. Main conclusions can provide a sientific basis for the wind-resistant design of such three-tower connected tall building.

Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구)

  • Lee, Seung-Chul;Yoon, Yong-Hee;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.97-100
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2$ - free hydrogen . The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by TEM image.

  • PDF

Near-infrared Spectroscopy of Iron Knots in Cassiopeia A Supernova Remnant

  • Lee, Yong-Hyun;Koo, Bon-Chul;Moon, Dae-Sik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.68.1-68.1
    • /
    • 2010
  • Cassiopeia A supernova remnant is a young (~330 yr) remnant of Type IIb SN explosion with a massive progenitor. It shows two distinct optical knots; fast moving ejecta knots (FMKs) and quasi stationary circumstellar knots (QSFs). These knots offer an unique opportunity to explore the details of the explosion and also the end state evolution of the Type IIb SN progenitor. We have obtained NIR long-slit (30") spectra of 7 positions around the bright rim of Cas A in [Fe II] 1.644 micron using Triplespec which is a cross-dispersed near-infrared spectrograph that provides continuous wavelength coverage from 0.95-2.46um at intermediate resolution of 2700. Most of the FMKs show strong sulfur, silicon, and iron forbidden lines but no hydrogen or helium lines. The QSFs, on the other hand, show a much richer spectrum with strong hydrogen, helium, and iron lines, but no sulfur and silicon lines. We measure their fluxes and radial velocities, and derive their physical parameters such as electron density and temperature. We also measure the proper motion of these knots from two [Fe II] 1.644 micron images obtained at 3-year interval. We analyze the physical properties of these knots and discuss the evolution and explosion of the progenitor of Cas A.

  • PDF

Effects of a Coaching-based Childbirth Program on Anxiety and Childbirth Self-efficacy among Primigravida Women (코칭 출산교육 프로그램이 초임부의 불안과 출산 자기효능감에 미치는 효과)

  • Kim, Sue;Kim, Hee-Sook;Cheong, Ha-Yoon
    • Women's Health Nursing
    • /
    • v.17 no.4
    • /
    • pp.369-377
    • /
    • 2011
  • Purpose: Childbirth self-efficacy plays an important role in women's ability to cope with labor and delivery. Coaching has been gaining popularity as a way to promote cognitive, emotional and behavioral change. This study aimed to test the effects of a Coaching-based childbirth program on anxiety and childbirth self-efficacy among primigravida women. Methods: The study design was a quasi-experimental pre-post design. A coaching-based childbirth program was developed synthesizing concepts and techniques from the literature on coaching and was verified by an expert panel. It consisted of four weekly 2-hour small group sessions. Pregnant women were recruited from H hospital in Seoul. Childbirth self-efficacy and state anxiety were measured before and after the program. Results: Although there was a no significant reduction in anxiety, there were statistically significant increase for childbirth self-efficacy in the experimental group when compared to the control group. Conclusion: The program appears to increase childbirth self-efficacy for pregnant women. Future studies may benefit from using mixed coaching modalities and consider measuring health behaviors and obstetric outcomes to gain insights on its long-term impact.

A Study on the Ram Accelerator Performance Improvement Using Numerical Optimization Techniques (수치 최적화 기법을 이용한 램 가속기 성능 향상 연구)

  • Jeon Yong-Hee;Lee Jae-Woo;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.77-84
    • /
    • 1999
  • Numerical design optimization techniques are implemented for the improvement of the ram accelerator performance. The design object is to find the minimum ram tube length required to accelerate projectile from initial velocity $V_0$ to target velocity $V_e$. The premixture is composed of $H_2,\;O_2,\;N_2$ and the mole numbers of these species are selected as design variables. The objective function and the constraints are linearized during the optimization process and gradient-based Simplex method and SLP(Sequential Linear Programming) have been employed. With the assumption of two dimensional inviscid flow for internal flow field, the analyses of the nonequilibrium chemical reactions for 8 steps 7 species lave been performed. To determined the tube length, ram tube internal flow field is assumed to be in a quasi-steady state and the flow velocity is divided into several subregions with equal interval. Hence the thrust coefficients and accelerations for corresponding subregions are obtained and integrated for the whole velocity region. With the proposed design optimization techniques, the total ram tube length had been reduced $19\%$ within 7 design iterations. This optimization procedure can be directly applied to the multi-stage, multi-premixture ram accelerator design optimization problems.

  • PDF

THE PERFORMANCE ANALYSIS OF A CIRCULATING WATER PUMP FOR A NUCLEAR POWER PLANT (원자력 발전소용 순환수 펌프의 성능해석)

  • Lee, M.S.;Han, B.Y.;Hwang, D.Y.;Yoo, S.S.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.69-75
    • /
    • 2009
  • The objective of this study is to investigate the suitable design for a domestic Circulating water pump(CWP), which is used in cooling-water intakes for the unit 3 and 4 of Yeonggwang nuclear power plant. All the simulations are performed, using CFD method with a commercial code STAR-CCM+ version 3.02. After modeling a present design of the pump, the flow around the rotating blade was calculated by using quasi-static method and sliding mesh method with the almost same condition as an actual state. Based on fundamental simulations with various depth of sea water, the reference pressure for the boundary condition of the present study was decided. To verify the reliability of the calculation results, the suction flow rate of the data was compared with that of the experimental data. As a result of this comparison, it is confirmed that two results are fairly consistent. For the improvement of the suction flow rate, computational analysis was done by changing a flow channel and blade shapes. It is shown that the suction flow rate of the new pump was improved.

A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis- (정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석-)

  • Park, Gil-Mun;Cho, Byeong-Gi;Koh, Yeong-Ha;Bong, Tae-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

Preparation of TiO2 Nanowires/Nanoparticles Composite Photoanodes for Dye-sensitized Solar Cells

  • Heo, Sung Yeon;Chi, Won Seok;Kim, Jin Kyu;Lee, Chang Soo;Kim, Jong Hak
    • Rapid Communication in Photoscience
    • /
    • v.2 no.3
    • /
    • pp.82-84
    • /
    • 2013
  • We fabricated dye-sensitized solar cells (DSSCs) with $TiO_2$ nanowire (NW)/nanoparticle (NP) composite and solidified nanogel as the photoelectrode and electrolyte, respectively. $TiO_2$ NWs were generated via pore-infiltration of titanium (IV) isopropoxide (TTIP) into a track-etched polycarbonate membrane with a pore diameter of 100 nm, followed by calcination at $500^{\circ}C$. Energy conversion efficiency of $TiO_2$ NW/NP-based DSSCs was always higher than that of NP-based cells. We attributed this to improved light scattering and electron transport by $TiO_2$ NWs, as verified by intensity modulation photocurrent spectroscopy (IMPS) and intensity modulation photovoltage spectroscopy (IMVS) analyses. Quasi-solid-state DSSCs with NW/NP composites exhibited 5.0% efficiency at 100 $mW/cm^2$, which was much greater than that of NP-based cells (3.2%).

A study on the strain rate sensitivity according to the temperature for steel sheets of an auto-body (차체용 강판의 온도에 따른 변형률 속도 민감도 연구)

  • Lee H. J.;Song J. H.;Cho S. S.;Kim S. B.;Huh H.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper is concerned with the thermo-mechanical behavior and temperature dependent strain rate sensitivity of steel sheet for an auto-body. In order to Identify the temperature dependent strain rate sensitivity of SPRC35R and SPRC45E, uniaxial tension tests are performed with the variation of the strain rates from 0.001/sec to 200/sec, and the variation of environmental temperatures from $-40^{\circ}C\;to\;200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained with the static tensile test and at the intermediate strain rate is from the high speed tensile test. The experimental results show that the strain rate sensitivity increases at low temperature and it decreases at high temperature. It means that as the strain rate getting increasing, the variation of flow stress is more sensitive on the temperature. The results also indicates that the material properties of SPRC35R is more depend on the changes of strain rates and temperature than those of SPRC45E.

  • PDF