• Title/Summary/Keyword: Quasi-resonant

Search Result 141, Processing Time 0.021 seconds

Passive Suppression of Nonlinear Panel Flutter Using Piezoelectric Materials with Resonant Circuit

  • Moon, Seong-Hwan;Yun, Chul-Yong;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • In this study, a passive suppression scheme for nonlinear flutter problem of composite panel, which is believed to be more reliable than the active control methods in practical operations, is proposed. This scheme utilizes a piezoelectric inductor-resistor series shunt circuit. The finite element equations of motion for an electromechanically coupled system is derived by applying the Hamilton\\`s principle. The aerodynamic theory adopted for the present study is based on the quasi-steady piston theory, and von-barman nonlinear strain-displacement relation is also applied. The passive suppression results for nonlinear panel flutter are obtained in the time domain using the Newmark-$\beta$ method. To achieve the best damping effect, optimal shape and location of fille piezoceramic (PZT) patches are determined by using genetic algorithms. The effects of passive suppression are investigated by employing in turn one shunt circuit and two independent shunt circuits. Feasibility studies show that two independent inductor-resistor shunt circuits suppresses flutter more effectively than a single shunt circuit. The results clearly demonstrate that the passive damping scheme that uses piezoelectric shunt circuit can effectively attenuate the flutter.

An Improved PFC & Low Noise Power Supply using Quasi-Resonant Mode Hybrid IC of STR-G9600 (의사공진형 Hybrid IC STR-G9600을 이용한 저 노이즈 역률 개선형 전원 장치)

  • Lee Myung Jun;Ahn Jun Young;Shin Ho Jun;Bae Jun Sung
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.233-236
    • /
    • 2002
  • The solution for PFC(Power Factor Correction), as a regulation in energy Policy, is becoming a hot Issue in every country because of the shortage of electrical energy. Therefore, a new improved idea for PFC problem has been introduced in this study. A lot of merits, effective cost by simple circuit, reduced PCB size, lighter than reactor in the view of weight, lower level of screen noise by leakage inductance in CTV applications, have been stated by comparing to the earlier method of using a Reactor. All test results in this statement were done by using a power device of STR-G9600 series based on the real load condition of color television. furthermore, the study shows that the test results also meets the IEC-1000-3-2 class D, which regulates the PFC when input power of a set is more than 75watts. More improved PFC in other applications hopes to be implemented by using the proposed method.

  • PDF

Optimal Design of GaN-FET based High Efficiency and High Power Density Boundary Conduction Mode Active Clamp Flyback Converter (GaN-FET 기반의 고효율 및 고전력밀도 경계전류모드 능동 클램프 플라이백 컨버터 최적설계)

  • Lee, Chang-Min;Gu, Hyun-su;Ji, Sang-keun;Kang, Jeong-Il;Ha, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.201-203
    • /
    • 2018
  • 최근 휴대용 어댑터의 동향은 고주파수 전력 컨버터 설계를 통한 어댑터의 고효율화 및 소형화의 중요성을 강조하고 있다. 그러나 기존 준공진형(Quasi Resonant, QR) 플라이백 컨버터는 하드 스위칭 동작으로 고주파수 구동에 한계가 있으며, 누설 인덕턴스 에너지에 의한 손실로 인해 고효율을 달성하기가 어렵다. 반면, 능동 클램프 플라이백(Active Clamp Flyback, ACF) 컨버터는 ZVS(Zero Voltage Switching) 동작을 하여 고주파수 구동에 유리하고, 누설 인덕턴스 에너지를 입력으로 회기 시킴으로써 손실을 저감할 수 있다. 또한, 경계전류모드(Boundary Conduction Mode, BCM) 동작에서의 손실분석을 기반으로, 반도체 특성이 우수하여 고주파수 동작에 유리한 GaN-FET를 적용하고 최적 설계를 진행함으로써 고효율 및 고전력밀도를 달성하였다. 따라서 본 논문에서는 GaN-FET를 기반으로 하는 고효율 및 고전력밀도 BCM ACF 컨버터의 최적 설계 방안을 제시하고 65W급 시작품의 실험결과를 통해 이를 검증한다.

  • PDF

A Study A on Internal Loss Characteristics and Efficiency Improvement of Low Power Flyback Converter Using WBG Switch (WBG 스위치를 적용한 소용량 플라이백 컨버터의 내부손실 특성과 효율 개선에 관한 연구)

  • Ahn, Tae Young;Yoo, Jeong Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.99-104
    • /
    • 2020
  • In this paper, efficiency and loss characteristics of GaN FET were reported by applying it into the QR flyback converter. In particular, for the comparison of efficiency characteristics, QR flyback converter experimental circuits with Si FET and with GaN FET were separately produced in 12W class. As a result of the experiment, the experimental circuit of the QR flyback converter using GaN FET reached a high efficiency of 90% or more when the load power was 2W or more, and the maximum efficiency was observed to be about 92%, and the maximum loss power was about 1.1W. Meanwhile, the efficiency of the experimental circuit with Si FET increased as the input voltage increased, and the maximum efficiency was observed to be about 82% when the load power was 9W or higher, and the maximum loss power was about 2.8W. From the results, it is estimated that that in the case of the experimental circuit applying the GaN FET switch, the power conversion efficiency was improved as the switching loss and conduction loss due to on-resistance were reduced, and the internal loss due to the synchronous rectifier was minimized. Consequently, it is concluded that the GaN FET is suitable for under 20W class power supply unit as a high efficiency power switch.

초소형 Travel Adapter 전력변환 기술 동향

  • Ji, Sang-Geun;Kim, Min-Ji
    • KIPE Magazine
    • /
    • v.27 no.3
    • /
    • pp.26-30
    • /
    • 2022
  • 핸드폰, 노트북 빛 태블릿 PC와 같이 휴대할 수 있는 전자기기의 사용량이 높아질수록 대용량의 배터리를 필요로 하게 된다. 배터리 사양이 높아질수록 대용량의 배터리를 빠르게 충전시키는 어댑터 (Adapter)는 필수 요구 사항이 되었다. 고속 충전을 하기 위해선 높은 전류 공급 능력이 필요하며, 휴대성을 높이기 위해서 사이즈를 최소화하여 설계되어야 한다. 고효율 및 고밀도를 요구하는 시장에 걸맞게, 어댑터 시장 역시 Topology부터 사용 소자까지 많은 발전 중에 있다. 어댑터에 사용되는 대표적인 Topology는 절연에 용이하며 회로구조가 간단한 저비용, 고효율 Flyback Converter 회로가 기본적으로 사용된다. 하지만, 이 구조는 스위칭 주기마다 스위치 양단 전압 및 전류의 중첩에 의한 스위칭 손실이 불가피 하다는 단점이 존재한다. 그 단점을 보완하기 위해 RCD 스너버로 클램핑을 시켜줌과 동시에 변압기의 자화 인덕턴스와 스위치의 기생 커패시터의 공진 현상을 이용하여 스위치 양단 전압 VDS가 최소화되는 지점에서 다음 스위칭 동작을 수행하는 QR(Quasi-Resonant) Flyback Converter를 사용한 어댑터가 시장에서 주로 보였다. 하지만 QR Flyback Converter 역시 기존 방식보다 유리하지만 이 또한 스위칭 주파수 증가에 따른 한계가 존재한다. 따라서 현재는 영전압 스위칭 (Zero Voltage Switching, ZVS)이 가능한 ACF(Active Clamp Flyback) Converter 회로의 연구 개발이 활발히 진행되고 있다. 이때 스위칭 특성이 우수한 GaN-FET를 적용한 어댑터가 시장에 출시되고 있다. 특히, 이 시장에서는 GaN 소자를 적용한 어댑터를 차세대 전력 반도체 적용이라는 마케팅에도 이용되는 것을 확인할 수 있다.

A Novel type of High-Frequency Transformer Linked Soft-Switching PWM DC-DC Power Converter for Large Current Applications

  • Morimoto Keiki;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.216-225
    • /
    • 2006
  • This paper presents a new circuit topology of DC busline switch and snubbing capacitor-assisted full-bridge soft-switching PWM inverter type DC-DC power converter with a high frequency link for low voltage large current applications as DC feeding systems, telecommunication power plants, automotive DC bus converters, plasma generator, electro plating plants, fuel cell interfaced power conditioner and arc welding power supplies. The proposed power converter circuit is based upon a voltage source-fed H type full-bridge high frequency PWM inverter with a high frequency transformer link. The conventional type high frequency inverter circuit is modified by adding a single power semiconductor switching device in series with DC rail and snubbing lossless capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge inverter arms and DC busline can achieve ZVS/ZVT turn-off and ZCS turn-on commutation operation. Therefore, the total switching losses at turn-off and turn-on switching transitions of these power semiconductor devices can be reduced even in the high switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules is selected to be 60 kHz. It is proved experimentally by the power loss analysis that the more the switching frequency increases, the more the proposed DC-DC converter can achieve high performance, lighter in weight, lower power losses and miniaturization in size as compared to the conventional hard switching one. The principle of operation, operation modes, practical and inherent effectiveness of this novel DC-DC power converter topology is proved for a low voltage and large current DC-DC power supplies of arc welder applications in industry.

A Study on PFC Buck-Boost AC-DC Converter of Soft Switching (소프트 스위칭형 PFC 벅-부스트 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.465-471
    • /
    • 2007
  • The system efficiency of the proposed Buck-Boost AC-DC converter is increased by soft switching method. The converter includes to merit of power factor correction (PFC) from sinusoidal control of input current. The switching behavior of control switches operates with soft switching by partial resonance, and then the proposed converter has high system efficiency with decrement of switching power loss. The input current waveform in proposed converter is got to be a sinusoidal form of discontinuous quasi-pulse row in proportion to magnitude of AC input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity. The output voltage of the converter is regulated by PWM control technique. The discontinuous mode action of current flowing into inductor makes to simplify control method and control components. The proposed PFC Buck-Boost converter is analyzed to compare with the conventional PFC Buck-Boost converter. Some computer simulative results and experimental results confirm to the validity of the analytical results.

High Precision Measurement for String Resonator used in FBG Strain Sensors (광섬유 브래그 격자 변형률 센서용 현공진기의 고정밀 측정)

  • 이영균;송인천;정성호;이병하;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.135-139
    • /
    • 2001
  • This paper describes a string resonator that is used for the interrogation system of a Fiber Bragg Grating(FBG) strain sensor. The strain on the fiber piece is calculated from the measured frequency based on that the natural frequency of a string is a function of the applied absolute strain. Existing research considered a fiber as a string, but a fiber is not a string in the strict sense due to its bending stiffness, thus the fiber should be modeled as a beam accompanied with an axial force. In the vibration modeling, the relationship between the strain and the natural frequency is derived, and then the resonance condition is described in terms of both the phase and the mode shape for sustaining resonant motion. Several experiments verify the effectiveness of the proposed model of the fiber. The performance of the string resonator is analyzed by measuring the frequency change according to the applied strains in the dynamic range of 1100$\mu\varepsilon$ referred to the displacement from capacitance sensor. From the experimental results, the implemented string resonator provides the accuracy of $\pm$3$\mu\varepsilon$, the quasi-static resolution of ~0.1$\mu\varepsilon$(rms) which amount to be $\pm$0.17$\mu\textrm{m}$ and ~6nm respectively, in case of fiber length of 56mm. For a dynamic strain, it can provide the accuracy of ~3$\mu\varepsilon$ until the frequency comes to 8Hz. As a consequence, the string resonator proposed for FBG sensor provides the high accuracy and the high resolution in strain measurement, and also it is expecting to be used, for the application, to not only strain but also displacement measuring device.

  • PDF

A Study on 60W Class Ultra-small Adapter with Active Snubber Type Flyback Converter (액티브 스너버형 플라이백 컨버터를 적용한 60W급 초소형 어댑터에 관한 연구)

  • Ahn, Tae-Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.613-618
    • /
    • 2018
  • In this paper, an active snubber type flyback converter was applied to a 60W class adapter and its test results are reported by producing a prototype. Especially, the prototype of the adapter was designed for both input voltage of 110V and 220V. The output voltage was designed for 60W with 19V class which is the most commonly used in laptops. The prototype was designed to a volume of about $50cm^3$ and a power density of about $1.22W/cm^3$ to minimize the size and verify portability. The maximum efficiency of the prototype was 90.88% at its maximum load of 60W against input voltage change and 91.04% was observed at 60W under input voltage of 220V. Furthermore, the stability of the output voltage against load power was observed to be within about 0.07%.

Computation of Nonlinear Energy Transfer among Wind Seas (비선형 상호작용에 의한 풍파 성분간 에너지 전달의 계산)

  • 오병철;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.7-19
    • /
    • 1999
  • The energy transfer between sea-wave components by way of nonlinear wave-wave interactions plays a central role in spectral evolution. Since huge calculation time is required to exact computation of the resulting Boltzmann integral, however, the exact nonlinear energy transfer has not been directly introduced into operational wave models. Thus, effective calculation methods were examined in the present study which exploit the scale property of a scattering coefficient and the detailed balance of interactions. The improved Webb's method (IWM) has inherent stability because singularities degenerate into a negligible point. The improved Masuda's method (IMM) makes a quasi-analytical treatment of the inherent singularities and requires only 1.3 seconds of computer time via Pentium 300MHz processor. The IMM is, therefore, projected to be very useful for theoretical researches in spectral evolution with fetch- or duration-limited situations.

  • PDF