• Title/Summary/Keyword: Quasi-One-Dimensional

Search Result 114, Processing Time 0.021 seconds

A Study on the Gas Wave Propagation in the Pipe by Numerical analysis (수치해석에 의한 파이프에서의 가스파동전하에 관한 연구)

  • 김명균
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.154-160
    • /
    • 1998
  • This study describes a theoretical and experimental investigation of gas wave propagation in the pipe system. Most calculations of compressible flows in the pipe have been based on the method of characteristics. This technique has propensity to truncate waves and is difficult to apply to non-perfect gas. A method that describes the application of a two-step Lax-Wendroff acheme to solution of the unsteady one-dimentional flow in the pipe was developed. Theoretical calculations using both the method of characteristics and the two-step Lax-Wendroff method are presented including a realistic model for heat transfer and friction processes. In the present work, account is taken of the nonlinear behavior. For sections of parallel pipe, an one dimensional unsteady homentropic analysis is employed, and a numerical solution is obtained with the aid of a digital computer, using the method of characteristics and two-step Lax-Wendroff method. This analysis is then combined with boundary models, based on a quasi-steady flow approach, to give a complete treatment of the flow behavior in the pipe system.

  • PDF

Dynamic responses of an FPSO moored on sloped seabed under the action of environmental loads

  • Roy, Shovan;Banik, Atul K.
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.329-343
    • /
    • 2018
  • The inclination of seabed profile (sloped seabed) is one of the known topographic features which can be observed at different seabed level in the large offshore basin. A mooring system connected between the platform and global seabed is an integral part of the floating structure which tries to keep the floating platform settled in its own position against hostile sea environment. This paper deals with an investigation of the motion responses of an FPSO platform moored on the sloped seabed under the combined action of wave, wind and current loads. A three-dimensional panel discretization method has been used to model the floating body. To introduce the connection of multi-segmented non-linear elastic catenary mooring cables with the sloped seabed, a quasi-static composite catenary model is employed. The model and analysis have been completed by using hydrodynamic diffraction code AQWA. Validation of the numerical model has been successfully carried out with an experimental work published in the latest literature. The analysis procedure in this study has been followed time domain analysis. The study involves an objective oriented investigation on platform motions, in order to identify the effects of the slopped seabed, the action of the wave, wind and current loads and the presence of riser system. In the end, an effective analysis has been performed to identify a stable mooring model in demand of reducing structural responses of the FPSO.

A Study on A Dimensional Active Phased Array Antenna (2차원 Quasi-optical 능동배열 안테나에 관한 연구)

  • 김준모;윤형국;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.514-522
    • /
    • 2000
  • In this thesis, a two-dimensional active phased array antenna without phase shifter is studied for two-dimensional beam scanning. A designed two-dimensional oscillator-type active array antenna, radiation elements and the oscillator circuits were combined with via-hole and coupled by slot on the opposite ground plane. The operating characteristics are analyzed and experimentally demonstrated , The two-dimensional $4\times4$ elements were designed for the proper coupling strengths and coupling phases by adjusting the width, length and offset position of slot-lines. The fabricated active phased array antenna shows the beam shift characteristics capable of scanning from $-17^{\circ}$ to $18^{\circ}$ with respect to broadside in one dimension, from $-5^{\circ}$ to $10^{\circ}$ in two dimension. The experimental results show that it is possible to use the oscillator-type active phased array antenna as a two-dimensional planar array antenna.

  • PDF

Performance assessment of pitch-type wave energy converter in irregular wave conditions on the basis of numerical investigation

  • Poguluri, Sunny Kumar;Kim, Dongeun;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.23-38
    • /
    • 2022
  • In this paper, a pitch-type wave energy converter (WEC-rotor) is investigated in irregular wave conditions for the real sea testing at the west coast of Jeju Island, South Korea. The present research builds on and extends our previous work on regular waves to irregular waves. The hydrodynamic characteristics of the WEC-rotor are assessed by establishing a quasi-two-dimensional numerical wave tank using computational fluid dynamics by solving the Reynolds-averaged Navier-Stokes equation. The numerical solution is validated with physical experiments, and the comparison shows good agreement. Furthermore, the hydrodynamic performance of the WEC-rotor is explored by investigating the effect of the power take-off (PTO) loading torque by one-way and two-way systems, the wave height, the wave period, operational and high sea wave conditions. Irrespective of the sea wave conditions, the absorbed power is quadratic in nature with the one-way and two-way PTO loading systems. The power absorption increases with the wave height, and the increment is rapid and mild in the two-way and one-way PTO loading torques, respectively. The pitch response amplitude operator increases as the wave period increases until the maximum value and then decreases. For a fixed PTO loading, the power and efficiency are higher in the two-way PTO loading system than in the one-way PTO loading system at different wave periods.

Numerical Investigation of Dual Mode Ramjet Combustor Using Quasi 1-Dimensional Solver (근사 1차원 솔버를 이용한 이중모드 램제트 연소실 해석)

  • Yang, Jaehoon;Nam, Jaehyun;Kang, Sanghun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.909-917
    • /
    • 2021
  • In this work, a one-dimensional combustor solver was constructed for the scramjet control m odel. The governing equations for fluid flow, Arrhenius based combustion kinetics, and the inje ction model were implemented into the solver. In order to validate the solver, the zero-dimensi onal ignition delay problem and one-dimensional scramjet combustion problem were considered and showed that the solver successfully reproduced the results from the literature. Subsequentl y, a ramjet analysis algorithm under subsonic speed conditions was constructed, and a study o n the inlet Mach number of the combustor was carried out through the thermal choking locatio ns at ram conditions. In such conditions, a model for precombustion shock train analysis was i mplemented, and the algorithm for transition section analysis was introduced. In addition, in or der to determine the appropriateness of the ram mode analysis in the code, the occurrence of a n unstart was studied through the length of the pseudo-shock in the isolator. A performance a nalysis study was carried out according to the geometry of the combustor.

STALE REDUCTIONS OF SINGULAR PLANE QUARTICS

  • Kang, Pyung-Lyun
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.905-915
    • /
    • 1994
  • Let $M_g$ be the moduli space of isomorphism classes of genus g smooth curves. It is a quasi-projective variety of dimension 3g - 3, when $g > 2$. It is known that a complete subvariety of $M_g$ has dimension $< g-1 [D]$. In general it is not known whether this bound is rigid. For example, it is not known whether $M_4$ has a complete surface in it. But one knows that there is a complete curve through any given finite points [H]. Recently, an explicit example of a complete curve in moduli space is given in [G-H]. In [G-H] they constructed a complete curve of $M_3$ as an intersection of five hypersurfaces of the Satake compactification of $M_3$. One way to get a complete curve of $M_3$ is to find a complete one dimensional family $p : X \to B$ of plane quartics which gives a nontrivial morphism from the base space B to the moduli space $M_3$. This is because every non-hyperelliptic smooth curve of genus three can be realized as a nonsingular plane quartic and vice versa. This paper has come out from the effort to find such a complete family of plane quartics. Since nonsingular quartics form an affine space some fibers of p must be singular ones. In this paper, due to the semistable reduction theorem [M], we search singular plane quartics which can occur as singular fibers of the family above. We first list all distinct plane quartics in terms of singularities.

  • PDF

A Study on the Inverse Shape Design of a Turbine Cascade Using the Permeable Boundary Condition and CFD (침투경계조건과 CFD를 이용한 터빈 역형상 설계에 관한 연구)

  • Lee, Eun-Seok;Seol, Woo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3116-3121
    • /
    • 2007
  • In this paper, the inverse shape design is introduced using the permeable wall boundary condition. Inverse shape design defines the blade shape for the prescribed Mach numbers or pressure distribution on its surface. It calculates the normal mass flux from the difference between the calculated and prescribed pressure at the surface. A new geometry can be achieved after applying the quasi one-dimensional continuity equation from the leading edge to the trailing edge. For validation of this method, two test cases are studied. The first test case of inverse shape design illustrates the cosine bump with a strong shock. After seven geometry modifications, the shock-free bump geometry can be obtained. The second example concerns the redesign of a transonic turbine cascade. The initial isentropic Mach distribution has a peak on the upper surface. The target isentropic Mach number distribution was imposed smoothly. The peak of Mach distribution has disappeared at the final geometry. This proposed inverse design method has proven to be an efficient and robust tool in turbomachinery design fields.

  • PDF

On the Structures of Taylor Vortices. (Taylor Vortex의 구조에 대한 연구)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1081-1088
    • /
    • 2003
  • Numerical investigation on the structures of various Taylor vortices induced in the flow between two concentric cylinders, with the inner one rotating and with a pressure-driven axial flow imposed, is carried out, and compared with the experiments of Wereley and Lueptow [Phys. fluid, 11(12), 1999] who studied the Taylor vortices using PIV in detail. Especially, the properties of helical vortices and random wavy vortices are discussed, and their three-dimensional structures are visualized using the numerical data. Our simulation also predicts that random wavy vortices have quasi-periodic movement which can be explained by traveling waves formed in the azimuthal direction. The numerical results are well consistent with the experimental findings of Wereley and Lueptow.

Theoretical-Numerical Modeling of High-Frequency Combustion Instabilities with Linear Waves (선형 고주파 연소불안정의 이론-수치적 예측)

  • Lee, G.Y.;Yoon, W.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.125-135
    • /
    • 2001
  • Aiming at a direct, also more realistic, prediction of unstable waves evolving in the combustion chamber, present paper introduces a new analytical method. Instability equations are freshly formulated, and solve the time-integrated ODEs for amplification factors to find the transients of pressure and velocity fluctuations. Present numerical approach requires no separate treatments for nonlinearities. Preliminary numerical experiments for unstable waves in quasi-one-dimensional rocket combustor, show validity and applicability of present model, and promise for its practical use. Study for the complex models for physics, especially velocity- and pressure-coupled responses, and inclusion of multi dimensionality remains as future tasks.

  • PDF

Design and Experimental Studies of Radial-Outflow Type Diagonal Flow Fan

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • In order to apply the design method of diagonal flow fan based on axial flow design to the design of radial-outflow type diagonal flow fan which has lower specific speed of 600-700 [$min^{-1}$, $m^3/min$, m], radial-outflow type diagonal flow fan which specific speed was 670 [$min^{-1}$, $m^3/min$, m] was designed by a quasi three-dimensional design method. Experimental investigations were conducted by fan characteristics test, flow surveys by a five-hole probe and a hot wire probe. Fan characteristics test agreed well with the design values. In the flow survey at rotor outlet, the characteristic region was observed. Two flow phenomena are considered as the cause of the characteristic region, one is tip leakage vortex near rotor tip and another is pressure surface separation on the rotor blade.